(矩阵快速幂) Fibonacci -- poj -- 3070
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11236 | Accepted: 7991 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
代码:
#include<stdio.h>
#include<string.h>
#define MOD 10000
struct node
{
int m[][];
}a, b; node cheng(node x, node y)
{
int i, j, k;
node c; for(i=; i<; i++)
for(j=; j<; j++)
{
c.m[i][j] = ;
for(k=; k<; k++)
c.m[i][j] = (c.m[i][j] + x.m[i][k]*y.m[k][j])%MOD;
} return c;
} int Fast_MOD(int n)
{
a.m[][] = a.m[][] = a.m[][] = ;
a.m[][] = ; b.m[][] = b.m[][] = ; /// b 初始化为单位矩阵
b.m[][] = b.m[][] = ; while(n)
{
if(n&) /// n是奇数
b = cheng(b, a);
a = cheng(a, a);
n >>= ;
}
return b.m[][];
} int main()
{
int n;
while(scanf("%d", &n), n!=-)
{
printf("%d\n", Fast_MOD(n));
}
return ;
}
(矩阵快速幂) Fibonacci -- poj -- 3070的更多相关文章
- 矩阵快速幂 POJ 3070 Fibonacci
题目传送门 /* 矩阵快速幂:求第n项的Fibonacci数,转置矩阵都给出,套个模板就可以了.效率很高啊 */ #include <cstdio> #include <algori ...
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- poj 3070 Fibonacci 矩阵快速幂
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
- POJ 3070 Fibonacci 【矩阵快速幂】
<题目链接> Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 ...
- POJ 3070 Fibonacci 矩阵快速幂模板
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18607 Accepted: 12920 Descr ...
- poj 3070 Fibonacci(矩阵快速幂,简单)
题目 还是一道基础的矩阵快速幂. 具体的居者的幂公式我就不明示了. #include<stdio.h> #include<string.h> #include<algor ...
- POJ 3070 Fibonacci(矩阵快速幂)
题目链接 题意 : 用矩阵相乘求斐波那契数的后四位. 思路 :基本上纯矩阵快速幂. #include <iostream> #include <cstring> #includ ...
- POJ 3070 Fibonacci矩阵快速幂 --斐波那契
题意: 求出斐波那契数列的第n项的后四位数字 思路:f[n]=f[n-1]+f[n-2]递推可得二阶行列式,求第n项则是这个矩阵的n次幂,所以有矩阵快速幂模板,二阶行列式相乘, sum[ i ] [ ...
- poj 3070 && nyoj 148 矩阵快速幂
poj 3070 && nyoj 148 矩阵快速幂 题目链接 poj: http://poj.org/problem?id=3070 nyoj: http://acm.nyist.n ...
- POJ 3070 矩阵快速幂解决fib问题
矩阵快速幂:http://www.cnblogs.com/atmacmer/p/5184736.html 题目链接 #include<iostream> #include<cstdi ...
随机推荐
- Delphi笔记-自定义提示窗口
unit pbHint; interface uses Windows, Controls, Forms, Graphics; type TPBHint=class(THintWindow) //要自 ...
- ubuntu wifi连接不上或经常断网,重启就好 [ 转]
转自 http://blog.csdn.net/chinabing/article/details/47184093 问题描述:最近安装了win7和ubuntu 14.04.2双系统,每次进入ubun ...
- scala-学习 1
目录 变量定义 scala定义两种变量: var 可变 初始化之后,可以多次被重新赋值 val 不可变 一旦被初始化 就不能再赋值. var firstarg :java.lang.String = ...
- oracle 查看被锁的表和解锁
相关视图 SELECT * FROM v$lock;SELECT * FROM v$sqlarea;SELECT * FROM v$session;SELECT * FROM v$process ;S ...
- Linux运维就业技术指导(九)期末架构考核
一,毕业架构设计考核筹备 1.1,架构图模板示例 1.1.1 架构图(一)概述 本架构是4层lvs负载均衡给后方7层nginx反向代理: 业务进行了动静分离: 数据库前端有memcached缓存组,降 ...
- win10关闭后台应用程序进程的方法
一)win10系统后台应用有两大特点: 1.win10系统有许多系统自带应用软件,在系统任务栏中看不到任何自带的应用程序运行 2.但通过任务管理器的进程中,可直观的看到许多非系统进程正在运行. 二)后 ...
- Linux下tar.gz 安装
将安装文件拷贝至你的目录中 如果是以root身份登录上的,就将软件拷贝至/root中. cp xxx.tar.gz /root 解压缩包 tar xvzf xxx.tar.gz 切换到安装目录下 cd ...
- sharepoint 调查问卷权限设置
参考网址:http://www.cnblogs.com/mybi/archive/2011/04/18/2019935.html 按文章设置后发现访问时提示没有权限. 于是把新权限(问卷回复)的权限组 ...
- for循环计算阶乘的和,for循环计算阶乘倒数的和
计算阶乘的和 //阶乘的和,5!+4!+3!+2! int a = 5; for(int b = 4; b > 0; b--) { a = a * b; } //先定义好最大数的阶乘是多少 in ...
- Sorting(好题)
Sorting https://www.zhixincode.com/contest/21/problem/I?problem_id=324 题目描述 你有一个数列a_1, a_2, \dots, a ...