普林斯顿大学算法课 Algorithm Part I Week 3 快速排序 Quicksort
发明者:Sir Charles Antony Richard Hoare
基本思想:
- 先对数据进行洗牌(Shuffle the array)
以数据a[j]为中心进行分区(Partition),使得a[j]左侧的数据都小于等于a[j],a[j]右侧的数据都大于等于a[j]
- 分区完后递归排序
分区演示(partitioning demo)
重复操作指导i和j指针相遇
- 当a[i] < a[lo]时,令i从左往右扫描
- 当a[j] > a[lo]时,令j从右往左扫描
- 交换a[i]和a[j]
当指针相遇时
- 交换a[lo]和a[j]
Java实现
public class Quick
{
private static int partition(Comparable[] a, int lo, int hi)
{
int i = lo, j = hi + 1;
while (true)
{
while (less(a[++i], a[lo]))
if (i == hi) break; // 从左向右找到不小于a[lo]的元素 while (less(a[lo], a[--j]))
if (j == lo) break; // 从右向左找到不大于a[lo]的元素 if (i >= j) break; // 指针相遇
exch(a, i , j); // 交换 } exch(a, lo, j); // 和比较元素交换
return j; // 返回比较元素所在的下标
} public static void sort(Comparable[] a)
{
StdRandom.shuffle(a); // 先对数组进行洗牌,复杂度是N
sort(a, 0, a.length - 1);
} private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= lo) return;
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);
}
}
实现细节(implementation details)
- 原地分区(Partitioning in-place):不用开辟额外的辅助数组
- 终止循环:检查两个指针是否相遇
- 边界:(j == lo)的检查是多余的,但(i == hi)的检查是必要的
- 保留随机性(Preserving randomness):需要洗牌(Shuffling)来保证运动(Performance guarantee)
- 相同的值(Equal keys):当存在重复的元素,最好将指针停在和比较元素相同的位置上(When duplicates are present, it is (counter-intuitively) better to stop on keys equal to the partitioning item's key.)
复杂度平均情况分析(average-case analysis):平均复杂度为 1.39NlgN,比归并排序还快
运行特征(Performance characteristic)
- 最坏情况(Worst case):1/2*N^2
- 几乎不会出现
- 平均情况(Average case):比较次数约等于1.39NlgN
- 比归并排序多出39%的比较次数
- 但是由于更少的数据交换,实际中比归并排序更快
- 随机洗牌(Random shuffle):
- 对最坏情况的概率性保证(Probabilistic guarantee)
- 经过实验验证的数学模型的基础(Basic for math model that can be validated with experiments.)
- 留心:出现以下情况时,运算是平方级的(quadratic)
- 当数组逆序排列
- 当存在多个重复元素
特性(Properties):
- 快速排序是一种原地排序算法(in-place sorting algorithm)
- 不具有稳定性
实践上的改善(practical improvements)
改善1:使用插入排序对小的子序列进行排序
- 即使是快速排序,也对小数组有不少的开销
- 当数组大小达到10时,停止(Cutoff)插入排序
- 大概有20%的改善
private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= lo + CUFOFF -1)
{
Insertion.sort(a, lo, hi);
return;
}
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);
}
改善2:使用平均数作为比较元素
- 最好的选择是比较元素刚好是中值
- 通过取样估计中值(Estimate true median by taking median of sample.)
- 对三个取样元素取平均值
- 大概有10%的改善
private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= lo) return; int m = medianOF3(a, lo, lo + (hi - lo)/2, hi);
swap(a, lo, m); int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);
}
普林斯顿大学算法课 Algorithm Part I Week 3 快速排序 Quicksort的更多相关文章
- 普林斯顿大学算法课 Algorithm Part I Week 3 排序算法复杂度 Sorting Complexity
计算复杂度(Computational complexity):用于研究解决特定问题X的算法效率的框架 计算模型(Model of computation):可允许的操作(Allowable oper ...
- 普林斯顿大学算法课 Algorithm Part I Week 3 归并排序 Mergesort
起源:冯·诺依曼最早在EDVAC上实现 基本思想: 将数组一分为(Divide array into two halves) 对每部分进行递归式地排序(Recursively sort each ha ...
- 普林斯顿大学算法课 Algorithm Part I Week 3 排序的应用 System Sorts
排序算法有着广泛的应用 典型的应用: 排序名称 排序MP3音乐文件 显示Google的网页排名的搜索结果 按标题顺序列出RSS订阅 排序之后下列问题就变得非常简单了 找出中位数(median) 找出统 ...
- 普林斯顿大学算法课 Algorithm Part I Week 3 重复元素排序 - 三路快排 Duplicate Keys
很多时候排序是为了对数据进行归类,这种排序重复值特别多 通过年龄统计人口 删除邮件列表里的重复邮件 通过大学对求职者进行排序 若使用普通的快排对重复数据进行排序,会造成N^2复杂度,但是归并排序和三路 ...
- 普林斯顿大学算法课 Algorithm Part I Week 3 求第K大数 Selection
问题 给定N个元素的数组,求第k大的数. 特例当k=0时,就是求最大值,当k=N-1时,就是求最小值. 应用顺序统计求top N排行榜 基本思想 使用快速排序方法中的分区思想,使得a[k]左侧没有更小 ...
- 普林斯顿大学算法课 Algorithm Part I Week 3 排序稳定性 Stability
稳定性(Stability):先按性质A排序,再按性质B排序,性质B相同的那些项是否仍然是按性质A排序的? 一个稳定的排序,相同值的元素应仍保持相对顺序(relative order) 稳定的算法:插 ...
- 普林斯顿大学算法课 Algorithm Part I Week 3 自我总结
要熟练掌握比较器Comparator public final Comparator<T> MY_COMPARATOR = new myComparator(); //定义比较器 .... ...
- 普林斯顿大学算法课 Algorithm Part I Week 3 比较器 Comparators
比较器接口(Comparator interface):用可选顺序(alternate order)进行排序 public interface Comparator<key> int co ...
- 普林斯顿大学算法课 Algorithm Part I 学习资源
网友笔记参考 果壳Mooc首页 revilwang的专栏 白色咖啡 Weiran Liu的渣技术小专栏 Bug表:http://findbugs.sourceforge.net/bugDescript ...
随机推荐
- Android平台对H264视频硬解码
本文讲述如何使用Android标准的API (MediaCodec)实现H264的硬件解码. 原本我们是用JNI调用平台提供的硬件解码接口得到YUV帧,再放入opengl脚本里处理渲染的.可是换了新平 ...
- alsa音频驱动科普第一课
做linux音频编程对alsa应该不陌生. 但是对于刚接触这块技术的同学来说是一件困难的事情.原因在于:网上关于alsa的资料太少了,特别国内的资料更是大部分重复.对于初学者来说特别苦恼. 由于笔者经 ...
- PHP中的错误处理
程序只要在运行,就免不了会出现错误!或早或晚,只是时间问题罢了. 错误很常见,比如Notice,Warning等等.此时一般使用set_error_handler来处理: <?php set_e ...
- Amzon MWS API开发之 上传数据
亚马逊上传数据,现有能操作的功能有很多:库存数量.跟踪号.价格.商品....... 我们可以设置FeedType值,根据需要,再上传对应的xml文件即可. 下面可以看看FeedType类型 这次我们拿 ...
- MVC与WebForm最大的区别
原文地址:http://www.cnblogs.com/birdshover/archive/2009/08/24/1552614.html 使用ASP.NET MVC框架,创建默认项目,第一直观感觉 ...
- (九)Android权限系统
一.WebView请求权限实例 1.WebView获取网页访问权限的xml布局文件和MainActivity中的程序如下 <WebView android:layout_width=" ...
- SQL————高级查询
高级查询 --连接查询 select * from 表1,表2 ————形成笛卡尔积 select * from 表1,表2 where 表1.主键=表2.外键 ————主外键位置可以互换 --jo ...
- c# 委托内部构造
以下纯属个人简介,错误之处,请随意指出. 委托是指向方法的,而事件是委托的触发器,执行事件,就会遍历委托里的方法,并且执行. 委托内部构造第一块是方法指针(methodPtr),用于指向方法的内存地址 ...
- 【.Net】文件并发(日志处理)--队列--Redis+Log4Net
多线程操作同一个文件时会出现并发问题.解决的一个办法就是给文件加锁(lock),但是这样的话,一个线程操作文件时,其它的都得等待,这样的话性能非常差.另外一个解决方案,就是先将数据放在队列中,然后开启 ...
- python基础:名称空间与作用域
Python的变量定义后都有自己的作用域,每个作用域内都有名字空间.名称空间就是变量名称与对象的关联关系.Python中使用变量名引用对象,需要使用该变量时,就在命名空间中进行搜索,获取对应的对象.从 ...