poj1330Nearest Common Ancestors(LCA小结)
题目大意:意如其名。
题目分析:本题只有一个查询,所以可以各种乱搞过去。
不过对于菜鸟而言,还是老老实实练习一下LCA算法。
LCA有很多经典的算法。按工作方式分在线和离线2种。
tarjan算法是经典的离线算法。这篇博客讲的太好懂了,我也不好意思班门弄斧,具体戳进去看看就会明白。重点是那个插图,一看秒懂。
在线算法主要有倍增算法和转RMQ算法。
另外LCA还有2种更为高效的O(n)-O(1)算法。一种请戳这里,另一种其实就是先将LCA转化成RMQ,再利用笛卡尔树O(n)预处理,O(1)回答,具体可以戳这里。
后两种O(n)算法还没有仔细研究,大致看了下,不是很明白,但是感觉很厉害的样子。mark一下,以后抽时间学习一下。
下面给出本题的前3种算法具体实现:
1:tarjan算法(虽然对本题来说有点奢侈了。。)
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 10005;
struct node
{
int to,next;
}e[N];
int head[N],set[N],fa[N],in[N];
bool vis[N];
int n,num,p,q;
void build(int s,int ed)
{
e[num].to = ed;
e[num].next = head[s];
head[s] = num ++;
}
void init()
{
num = 0;
memset(head,-1,sizeof(head));
memset(in,0,sizeof(in));
}
int find(int x)
{
int rt = x;
while(set[rt] != rt)
rt = set[rt];
int pa = set[x];
while(pa != rt)
{
set[x] = rt;
x = pa;
pa = set[x];
}
return rt;
}
void bing(int a,int b)
{
int ra = find(a);
int rb = find(b);
if(ra != rb)
set[rb] = ra;
}
void dfs(int cur)
{
fa[cur] = cur;
set[cur] = cur;
int i;
for(i = head[cur];i != -1;i = e[i].next)
{
dfs(e[i].to);
bing(cur,e[i].to);
fa[find(cur)] = cur;
}
vis[cur] = true;
if((p == cur && vis[q]))
printf("%d\n",fa[find(q)]);
if((q == cur && vis[p]))
printf("%d\n",fa[find(p)]);
}
void tarjan()
{
int i;
memset(vis,false,sizeof(vis));
for(i = 1;i <= n;i ++)
if(in[i] == 0)
break;
dfs(i);
}
int main()
{
int t;
int i,a,b;
scanf("%d",&t);
while(t --)
{
scanf("%d",&n);
init();
for(i = 1;i < n;i ++)
{
scanf("%d%d",&a,&b);
build(a,b);
in[b] ++;
}
scanf("%d%d",&p,&q);
tarjan();
}
return 0;
}
2:LCA转RMQ,再st算法:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 20005; int dep[N],pos[N],seq[N],first[N],in[N];
int dp[N][20];
struct node
{
int to,next;
}e[N];
int head[N];
int n,num,p,q,id;
void build(int s,int ed)
{
e[num].to = ed;
e[num].next = head[s];
head[s] = num ++;
} void dfs(int cur,int deep)
{
dep[cur] = deep;
first[cur] = id;
pos[id] = cur;
seq[id ++] = dep[cur];
int i;
for(i = head[cur];i != -1;i = e[i].next)
{
dfs(e[i].to,deep + 1);
pos[id] = cur;
seq[id ++] = dep[cur];
}
}
int rmq()
{
int i,j;
for(i = 1;i <= id;i ++)
dp[i][0] = i;
for(j = 1;(1<<j) <= id;j ++)
{
for(i = 1;(i + (1<<(j - 1))) <= id;i ++)
if(seq[dp[i][j - 1]] < seq[dp[i + (1<<(j - 1))][j - 1]])
dp[i][j] = dp[i][j - 1];
else
dp[i][j] = dp[i + (1<<(j - 1))][j - 1];
}
int tp = first[p];
int tq = first[q];
if(tp > tq)
swap(tp,tq);
int k = floor(log((double)(tq - tp + 1))/log(2.0));
int tmp;
if(seq[dp[tp][k]] < seq[dp[tq - (1<<k) + 1][k]])
tmp = dp[tp][k];
else
tmp = dp[tq - (1<<k) + 1][k];
return pos[tmp];
}
void solve()
{
int i;
id = 1;
for(i = 1;i <= n;i ++)
if(in[i] == 0)
break;
dfs(i,0);
id --;
printf("%d\n",rmq());
}
int main()
{
int i,a,b,t;
freopen("in.txt","r",stdin);
scanf("%d",&t);
while(t --)
{
scanf("%d",&n);
num = 0;
memset(head,-1,sizeof(head));
memset(in,0,sizeof(in));
for(i = 1;i < n;i ++)
{
scanf("%d%d",&a,&b);
build(a,b);
in[b] ++;
}
scanf("%d%d",&p,&q);
solve();
}
return 0;
}
3:倍增算法:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 10005; int dp[N][20],deep[N];
struct node
{
int to,next;
}e[N];
int n,num,p,q;
int head[N],in[N];
void build(int s,int ed)
{
e[num].to = ed;
e[num].next = head[s];
head[s] = num ++;
}
void dfs(int cur,int fa)
{
deep[cur] = deep[fa] + 1;
dp[cur][0] = fa;
int i;
for(i = 1;i < 18;i ++)
dp[cur][i] = dp[dp[cur][i - 1]][i - 1];
for(i = head[cur];i != -1;i = e[i].next)
{
dfs(e[i].to,cur);
}
}
int lca()
{
if(deep[p] < deep[q])
swap(p,q);
int i,j;
for(j = deep[p] - deep[q],i = 0;j;j >>= 1,i ++)
{
if(j&1)
p = dp[p][i];
}
if(p == q)
return q;
for(i = 18;i >= 0;i --)
{
if(dp[p][i] != dp[q][i])
{
p = dp[p][i];
q = dp[q][i];
}
}
return dp[q][0];
}
void solve()
{
int i;
memset(deep,0,sizeof(deep));
for(i = 1;i <= n;i ++)
if(in[i] == 0)
break;
dfs(i,0);
printf("%d\n",lca());
}
int main()
{
int t,i,a,b;
freopen("in.txt","r",stdin);
scanf("%d",&t);
while(t --)
{
scanf("%d",&n);
num = 0;
memset(head,-1,sizeof(head));
memset(in,0,sizeof(in));
for(i = 1;i < n;i ++)
{
scanf("%d%d",&a,&b);
build(a,b);
in[b] ++;
}
scanf("%d%d",&p,&q);
solve();
}
return 0;
}
poj1330Nearest Common Ancestors(LCA小结)的更多相关文章
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- poj 1330 Nearest Common Ancestors LCA
题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...
- POJ 1330 Nearest Common Ancestors LCA题解
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19728 Accept ...
- pku 1330 Nearest Common Ancestors LCA离线
pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...
- poj 1330 Nearest Common Ancestors lca 在线rmq
Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...
- Nearest Common Ancestors(LCA)
Description A rooted tree is a well-known data structure in computer science and engineering. An exa ...
- poj1330Nearest Common Ancestors 1470 Closest Common Ancestors(LCA算法)
LCA思想:http://www.cnblogs.com/hujunzheng/p/3945885.html 在求解最近公共祖先为问题上,用到的是Tarjan的思想,从根结点开始形成一棵深搜树,非常好 ...
- poj----1330Nearest Common Ancestors(简单LCA)
题目连接 http://poj.org/problem?id=1330 就是构建一棵树,然后问你两个节点之间最近的公共父节点是谁? 代码: /*Source Code Problem: 1330 U ...
- POJ-1330--Nearest Common Ancestors(离线LCA)
LCA离线算法 它需要一次输入所有的询问,然后有根节点开始进行深度优先遍历(DFS),在深度优先遍历的过程中,进行并查集的操作,同时查询询问,返回结果. 题意: 求A ,B两点的最近公共祖先 分析: ...
随机推荐
- Java 学习第一天
java 学习路线 http://edu.csdn.net/main/studyline/heimaline.html?flz java 学习视频 —— 马士兵:毕向东
- C#获取文件和文件夹大小
代码如下: /// <summary> /// 获取文件夹大小 /// </summary> /// <param name="dirPath"> ...
- Ajax:Cross-Origin Resource Sharing(转)
实例:http://blog.csdn.net/hongweigg/article/details/39054403 通过XHR实现Ajax通信的一个主要限制,来源于跨域安全策略.默认情况下,XHR对 ...
- extjs folder is lost解决方法 和 FineUI主题切换时 iframe内的内容主题不变的解决方法
错误原因:extjs包和FineUI版本不一致 或者是 webconfig配置中 没有设置为任何人可访问 解放方法下载和FineUI版本相同的extjs包就ok了 解决方法:FineUI主题切换时 ...
- C#中子窗体获取父窗体中控件的内容
今天在做一个联系人管理的C#设计时,遇到了这个问题,我需要将父窗体中的textBox中的值传到子窗体并进行数据库查询操作,我用了new 父窗体().textBox.text;来进行值传递,然而并无卵用 ...
- poj3614 贪心
Sunscreen Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6410 Accepted: 2239 Descrip ...
- DOM 节点属性
DOM 节点属性 在文档对象模型 (DOM) 中,每个节点都是一个对象.DOM 节点有三个重要的属性 : 1. nodeName : 节点的名称 2. nodeValue :节点的值 3. nodeT ...
- PHP基础语法随记
PHP常量: 预定义常量: PHP自身也定义了大量的预定义常量,可以使用get_defined_constants()来查看,比较常用的预定义常量有: PHP_OS:PHP系统. PHP_VERSIO ...
- /users/products.:format 这种写法的其对应解析字符写法
“products.:format" 这种写法可以有对应的下面两种路由形式 /products.json /products.xml "products.:format?" ...
- AFNetworking 官方文档
AFNetworking Version Minimum iOS Target Minimum OS X Target Notes 2.x iOS 6 OS X 10.8 Xcode 5 is req ...