题意: lcm(a, b) = c; c是a,b的最小共倍数, 现在给出a, c, 要你求出最小的b.

解题思路:
         1. 如果c%a != 0 表示无解. 设b = c/a; 当gcd(a, b)==1时, 表示b就是要求的结果. 如果gcd(a, b) != 1;
             那么lcm(a, b)一定小于c. 你想一想为什么会这样, 因为原本a中有一部份与结果b相同. 那么, 说明
             a影响了b的值.
         2. 例如: a = 12 = 2^2*3^1, b = 16 = 2^4, c = 48 = 2^4*3^1;  b' = c/a = 4 = 2^2;
             如果b'就是b与a不相同的部分. 那么我们求出的b‘ 如果gcd(a, b') != 1表明a有一部份影响了结果.
             这样我们要求出原来的b, 就需要b'*gcd(a, b'), a/gcd(a, b');循环这个过程知道gcd(a, b') == 1为止.
             那么b'得到原本的结果b.

    //摘抄自http://blog.sina.com.cn/s/blog_77dc9e080101jhq7.html

ps:代码自己敲得。。。orz

 #include <iostream>
using namespace std; int a,c,b;
int gcd (int a,int b){
return b==?a:gcd (b,a%b);
} int main (){
int t;
cin>>t;
while (t--){
cin>>a>>c;
if (c%a==){
b=c/a;
int d;
d=gcd(a,b);
while (d!=){
b*=d;
a/=d;
d=gcd (a,b);
}
cout<<b<<endl;
}
else
cout<<"NO SOLUTION"<<endl;
}
return ;
}

UVA 11889 Benefit的更多相关文章

  1. UVA 11889 - Benefit 可直接枚举

    看题传送门 题目大意: 输入两个整数A和C,求最小的整数B,使得lcm(A,B)=C.如果无解,输出NO SOLUTION 思路: A*B=C*gcd(A,B) 所以 B / gcd(A,B) = C ...

  2. UVa 11889 Benefit(数论)

    题目链接: 传送门 Benefit Time Limit: 5000MS     Memory Limit: 32768 KB Description Recently Yaghoub is play ...

  3. Uva 11889 Benefit (lcm与gcd)

    题意:给你两个数,a,c,求出 lcm(a,b)==c 时的 b 的最小值 思路:我们知道一个性质 gcd(a,b)*lcm(a,b) = a*b 由此我们可以得到 b = gcd(a,b)*lcm( ...

  4. UVa 11889 (GCD) Benefit

    好吧,被大白书上的入门题给卡了.=_=|| 已知LCM(A, B) = C,已知A和C,求最小的B 一开始我想当然地以为B = C / A,后来发现这时候的B不一定满足gcd(A, B) = 1 A要 ...

  5. Benefit UVA - 11889(已知LCM和其中一个数,求另一个数)

    首先对于C不能整除A的状况肯定排除 然后得到B=C/A 然后取G=GCD(A,B) 如果G==1,那么此时B就是解 否则的话,就证明A,B,的最小公倍数肯定不是C,因为其最小公倍数是A*B/G 那么我 ...

  6. 数论 UVA 11889

    有关数论的题目,题目大意是给你两个数a和c,c为a和另一个数b的最小公倍数,要求你求出b的最小值.由最大公约数gcd(a,b)和最小公倍数lcm(a,b)之间的关系可知,lcm(a,b)*gcd(a, ...

  7. UVa 11889 最小公倍数

    https://vjudge.net/problem/UVA-11889 题意: 输入两个整数A和C,求最小的整数B使得lcm(A,B)=C. 思路: 首先C是A的公倍数,如果C%A不为0肯定是无解的 ...

  8. UVA数学入门训练Round1[6]

    UVA - 11388 GCD LCM 题意:输入g和l,找到a和b,gcd(a,b)=g,lacm(a,b)=l,a<b且a最小 g不能整除l时无解,否则一定g,l最小 #include &l ...

  9. uva 1354 Mobile Computing ——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5

随机推荐

  1. 如何只克隆git仓库中的一个分支?

    git clone -b 例如: git clone -b 指定的分支名字

  2. 基于VMware的eCos应用程序测试(hello wold)

    (1)脚本配置ecosconfig new pccdl_component CYG_HAL_STARTUP { # Flavor: data # No user value, uncomment th ...

  3. [Head First Python]4.读取文件datafile.txt, 去除两边空格, 存储到列表,从列表格式化(nester.py)后输出到文件man.out,other.out

    datafile.txt  #文件 Man: this is the right room for an argument. Other Man: I've told you once. Man: N ...

  4. PAT 1059. Prime Factors (25) 质因子分解

    题目链接 http://www.patest.cn/contests/pat-a-practise/1059 Given any positive integer N, you are suppose ...

  5. Parallel并行编程

    Parallel并行编程 Parallel并行编程可以让我们使用极致的使用CPU.并行编程与多线程编程不同,多线程编程无论怎样开启线程,也是在同一个CPU上切换时间片.而并行编程则是多CPU核心同时工 ...

  6. 使用ARM模板部署自动扩展的Linux VMSS(2)

    12.准备完了模板文件,我们使用Powershell来创建VMSS for Linux的自动扩展集合,首先登陆到Azure中国的ARM账号: Login-AzureRmAccount -Environ ...

  7. JS函数的属性

    1.arguments.callee //经典的阶乘(递归)函数 function factorial(num) { if (num <= 1) { return 1; } else { ret ...

  8. NFC应用(三)点对点(P2P)通信

    点对点(P2P)模式允许两个NFC设备之间建立通信链接并交换数据,与读写器.卡模式不一样的就是,P2P模式下数据交互是双向的. P2P遵循ISO18092规范,建立链接后使用NDEF(NFC Data ...

  9. Pascal's Triangle II 解答

    Question Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Ret ...

  10. 格而知之9:一些关于GCD的笔记

    1.最近在重读当年刚开始学习多线程时的笔记,发觉其中有一些地方还是比较容易模糊,于是整理这篇笔记记录一下. 执行方式和队列 2.队列用来存放管理要执行的任务,它分为并发队列(Concurrent Di ...