对于一个concept class C,如果存在一个算法A和一个多项式poly(.,.,.,.),有对于任意的ε>0、δ>0以及X的任意分布D和任何target concept C,当sample size m>=poly(1/ε,1/δ,n,size(c))时,不等式:

都成立,那么就说这个concept class C是PAC-learnable的。

(1).n:x的维度。

(2).size(c):

O(n):an upper bound on the cost of the computational representation of any element xЄX。对于一个维度为n的用数组表示的x来说要计算的话时间复杂度最高就是O(n)。

size(n):the maximal cost of the computation representation of cЄC。同O(n)的解释,可以看做就是c的大小。

如果算法A的样本复杂度关于1/δ,1/ε,n,size(c)的大小是多项式的,那么就说C是efficiently PAC-learnable的。当这样的A存在的时候,该算法A被叫做concept class C的PAC learning algorithm。

对于PAC-learnability还有一些要注意的地方:

(1).PAC对于x的任意分布D都是成立的。

(2).虽然对分布没有限定,training sample和testing sample都要产生与同一个分布D。

(3).PAC所解决的是一个concept class C的可学习性问题,并不针对一个特别的concept c(通常target c也是未知的但C是已知的)。

一个例子:

如图,X=R^2,concept class C是在R^2上的所有边与坐标轴平行的矩阵,目标是求得一个concept C使得矩阵内部的点都为1(蓝点),矩阵外部的点都为2(红点)。对于这个问题设计了一个非常简单的算法,算法返回包含了所有label为1的点的最小的矩阵。

假设算法返回的矩阵为R',我们沿R的四个边做四个矩形为r1,r2,r3,r4,并令它们的probability mass等于ε/4,如果我们要使R(R')也就是R'的gerneralization error大于ε,那么R'不能和四个矩阵都有交集,否则R-R'=R(R')必小于ε。也就是R'至少要和一个矩阵ri没有交集。

于是有:

(1):由于Rs与ri没有交集等价于没有蓝点落在ri中,又ri在target concept R中,所以没有红点落在ri中,综合下也就是没有点落在ri中,每个点落在ri的概率为ε/4,那么对于每个ri,m个点都不落在其中的概率为(1-ε/4)^m,有四个ri。

(2):为exp^(-x)的泰勒展开缩放。

由此得:

也就是样本大小m在满足上述不等式时能够保证concept space是PAC Learnable的。这里对于1/δ是ln复杂度,对于1/ε是线性复杂度,总的来说是efficiently PAC-learnable的。

上面矩阵的例子是对于PAC在一种特殊情况下的证明,下面我们试着推广至更多的情况:

1.finite H,consistent case

假设H为X至Y的一个有限空间函数集,对于任何目标concept cЄH以及独立同分布的样本集S,算法A都能返回一个与S一致的hypothesis hS,也就是Rhat(hS)=0.那么有对于任意的ε,δ>0:

如果:

都成立。

改写上式得到相应的generalization bound:

证明:我们要限制出现某个h和sample一致(consistent),但是error大于ε的情况发生的概率:

最后一步根据P(A∧B)=P(A|B)*P(B)<P(A|B)。

又有:

带入可得:

设不等式右边等于δ得证。

2.finite H,inconsistent case

H是一个有限的假设空间,对于任意δ>0,以至少1-δ的概率,有:

证明:Corollary(1):

固定ε>0,S为大小为m的i.i.d分布的样本集,那么对于任意hypothesis h:X->{0,1},下面的不等式都成立:

证明:直接使用Hoeffiding不等式可得。

Corollary(2):

单个hypothesis的generalization bound:

H是一个有限的假设空间,那么对于任意的δ>0,以至少1-δ的概率有:

证明:假设corollary(1)不等式右边等于δ可得。

定理证明:

最后一步运用Corollary(1),设不等式右边等于δ原式得证。

注意到,这里得到的bound要求我们在empirical error和H的大小中寻求一个平衡,一个大的H虽然会增加第二项的值但是会同时减少empirical error。当然,当empirical error差不多时,要尽量选择大小更小的hypothesis set,这也符合了Occam剃刀原则。

[FML]学习笔记二 PAC Learning Model的更多相关文章

  1. Learning ROS for Robotics Programming Second Edition学习笔记(二) indigo tools

    中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...

  2. [FML]学习笔记三 Rademacher Complexity

    该章节证明用到的不等式:Hoeffding不等式,McDiarmid不等式以及jensen不等式 Hoeffding's: McDiarmid不等式是Hoeffding不等式的一个推广,用f(S)代替 ...

  3. AJax 学习笔记二(onreadystatechange的作用)

    AJax 学习笔记二(onreadystatechange的作用) 当发送一个请求后,客户端无法确定什么时候会完成这个请求,所以需要用事件机制来捕获请求的状态XMLHttpRequest对象提供了on ...

  4. Django学习笔记二

    Django学习笔记二 模型类,字段,选项,查询,关联,聚合函数,管理器, 一 字段属性和选项 1.1 模型类属性命名限制 1)不能是python的保留关键字. 2)不允许使用连续的下划线,这是由dj ...

  5. kvm虚拟化学习笔记(二)之linux kvm虚拟机安装

    KVM虚拟化学习笔记系列文章列表----------------------------------------kvm虚拟化学习笔记(一)之kvm虚拟化环境安装http://koumm.blog.51 ...

  6. (转载)林轩田机器学习基石课程学习笔记1 — The Learning Problem

    (转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can M ...

  7. 微信小程序学习笔记二 数据绑定 + 事件绑定

    微信小程序学习笔记二 1. 小程序特点概述 没有DOM 组件化开发: 具备特定功能效果的代码集合 体积小, 单个压缩包体积不能大于2M, 否则无法上线 小程序的四个重要的文件 *js *.wxml - ...

  8. MongoDB学习笔记二- Mongoose

    MongoDB学习笔记二 Mongoose Mongoose 简介 之前我们都是通过shell来完成对数据库的各种操作, 在开发中大部分时候我们都需要通过程序来完成对数据库的操作 而Mongoose就 ...

  9. WPF的Binding学习笔记(二)

    原文: http://www.cnblogs.com/pasoraku/archive/2012/10/25/2738428.htmlWPF的Binding学习笔记(二) 上次学了点点Binding的 ...

随机推荐

  1. pyqt5表格qtablewidget

    表格用到控件QTableWidget,还有一个类似的叫QTableView的. 设置单元格里的内容用方法:setItem(0,0,str) 第一个0表示第一行, 第二个0表示第一列, 第三个参数是写入 ...

  2. 【转】对ARM堆栈的理解

    对ARM堆栈的理解 堆栈严格来说应该叫做栈,栈(Stack)是限定仅在一端进行插入或删除操作的线性表.因此,对栈来说,可以进行插入或删除操作的一端端称为栈顶(top),相应地,另一端称为栈底(bott ...

  3. div 居中进行总结

    1.margin:auto ;让元素居中,需要确定元素的宽度,并且需要是块元素 eg: div { width:200px; height:200px; background:#222; margin ...

  4. cf C. Levko and Array Recovery

    http://codeforces.com/contest/361/problem/C 这道题倒着一次,然后正着一次,在正着的一次的时候判断合不合法就可以. #include <cstdio&g ...

  5. Android 状态栏通知Notification、NotificationManager简介

    Notification(通知)一般用在电话,短信,邮件,闹钟铃声,在手机的状态栏上就会出现一个小图标,提示用户处理这个通知,这时手从上方滑动状态栏就可以展开并处理这个通知: 在Android系统中, ...

  6. 简单拨号器(Android)

    感受: 1.了解了intent中的action和Uri. 2.了解了向下一个活动传递数据. 3.了解了内容提供器. 4.了解自定义适配器. 4.其实T9拨号器和简单计算器原理一样.

  7. C++程序面试笔迹六

    1.const和static的作用 用最熟悉的语言: 2.阶乘求和  如:1!+2!+3!+4!+……+n!=sum? 3.删除掉字符串中相同的字母只留有一个  如: akkkjjtyy——> ...

  8. java.lang.NoClassDefFoundError 异常

    在项目实施过程中,当访问某一个功能时,出现异常为  java.lang.NoClassDefFoundError  com/xxx/yyy/Zzzz > ,检查发现这个类实际已经存在于应用服务器 ...

  9. Appium 点击Android屏幕

    用driver.tap(1, 10, 10, 800); 点击屏幕,经常提示:An unknown server-side error occurred while processing the co ...

  10. css如何使背景图片水平居中

    CSS中定位背景图片的属性是:background-position,用法background-position 属性设置背景图像的起始位置. 你要水平居中可以: div{background-pos ...