hdu3714 三分
Error Curves
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 4590 Accepted Submission(s): 1753
pays much attention to a method called Linear Discriminant Analysis, which
has many interesting properties.
In order to test the algorithm's efficiency, she collects many datasets.
What's more, each data is divided into two parts: training data and test
data. She gets the parameters of the model on training data and test the
model on test data. To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.
It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimum which related to multiple quadric functions. The new function F(x) is defined as follows: F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function. Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
1
2 0 0
2
2 0 0
2 -4 2
0.5000
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
using namespace std;
const int maxn=10000+100;
const double eps=1e-9;
const int inf=0xfffffff;
int n;
struct nod
{
double a;
double b;
double c;
};
nod f[maxn];
double cal(double x)
{
double maxn=-inf;
for(int i=0;i<n;i++)
{
maxn=max(maxn,f[i].a*x*x+f[i].b*x+f[i].c);
}
return maxn;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%lf%lf%lf",&f[i].a,&f[i].b,&f[i].c);
double l=0,r=1000;
while(l+eps<=r)
{
double mid=(l+r)/2;
double mmid=(mid+r)/2;
if(cal(mid)<=cal(mmid)) r=mmid;
else l=mid;
}
printf("%.4lf\n",cal(l));
}
return 0;
}
hdu3714 三分的更多相关文章
- hdu3714 三分找最值
Error Curves Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
- hdu3714 水三分
题意: 给你一些函数 y = ax^2 + bx + c,的a >= 0 的二次函数,x的范围是0--1000, 问你在这个范围内函数值最大的最小是多少,最大指的是对于某一个x最大的 ...
- BZOJ 1857 传送带 (三分套三分)
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从 ...
- hdu 4717(三分求极值)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 思路:三分时间求极小值. #include <iostream> #include ...
- HDU2438 数学+三分
Turn the corner Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- 三分之一的程序猿之社交类app踩过的那些坑
三分之一的程序猿之社交类app踩过的那些坑 万众创新,全民创业.哪怕去年陌生人社交不管融资与否都倒闭了不知道多少家,但是依然有很多陌生人社交应用层出不穷的冒出来.各种脑洞大开,让人拍案叫起. 下面我们 ...
- 基于jPlayer的三分屏制作
三分屏,这里的三分屏只是在一个播放器里同时播放三个视频,但是要求只有一个控制面板同时控制它们,要求它们共享一个时间轨道.这次只是简单的模拟了一下功能,并没有深入的研究. 首先,需要下载jPlayer, ...
- 【BZOJ-1857】传送带 三分套三分
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 1077 Solved: 575[Submit][Status][ ...
- ACM : HDU 2899 Strange fuction 解题报告 -二分、三分
Strange fuction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
随机推荐
- uva 10167 - Birthday Cake
题解:由于解太多,随机抓 A.B, 只要有符合就行了: (首先,Ax+By=0必须表示直线,即A.B不能同时为0:另外,要注意到直线不能过输入中的2N个点:检测点在直线的哪一侧,只需要简单的线性规划的 ...
- Java中int和String互相转换的多种方法
1 如何将字串 String 转换成整数 int? A. 有两个方法: 1). int i = Integer.parseInt([String]); 或 i = Integer.parseInt([ ...
- UVA 1344 Tian Ji -- The Horse Racing
Tian Ji -- The Horse Racing Here is a famous story in Chinese history. That was about 2300 years ago ...
- PHP数组的排序函数
对保存在数组中的相关数据进行排序是一件非常有意义的事情.在PHP中提供了很多函数可以对数组进行排序,这些函数提供了多种排序的方法.例如,可以通过元素的值或键及自定义排序等. ①简单的数组排序函数简单的 ...
- 内核参数优化之1 keepalive解析
以下信息纯属虚构,切勿相信! tcp/ip协议中有一个keep-alive机制,即检查空连接的时效性,当一个空连接持续一段时间后,就会发送一个keep-alive探测包,来探测客户端是否还存在. 如果 ...
- HTML&CSS基础学习笔记1.9-添加图片
<img>标签是用来添加图片的~ <img>标签的使用方法:<img src="图片的地址"> 先来看段实例代码: <!DOCTYPE h ...
- HTML&CSS基础学习笔记1.5-添加常用标签
代码如下: <!DOCTYPE html><html lang="en"><head> <meta charset="UT ...
- 如果通过adb查看当前显示的activity
通过adb 查看最上层成activity名字: linux: adb shell dumpsys activity | grep "mFocusedActivity" window ...
- 关于把A表中的数据复制到B表中。
最近公司需要把sql中的数据给整理出来,这就牵涉到数据转移问题. 我平时是很少接触sql这一块的.所以碰到这个问题甚是伤脑筋. 不过还好,这问题并不像我想象中的那么的困难. 以前做过把数据插入到临时表 ...
- 特征提取(Detect)、特征描述(Descriptor)、特征匹配(Match)的通俗解释
特征匹配(Feature Match)是计算机视觉中很多应用的基础,比如说图像配准,摄像机跟踪,三维重建,物体识别,人脸识别,所以花一些时间去深入理解这个概念是不为过的.本文希望通过一种通俗易懂的方式 ...