运算符重载的格式为:

返回值类型 operator 运算符名称 (形参表列){
//TODO:
}

一.在类里面实例运行符重载

#include <iostream>
using namespace std; class complex{
public:
complex();
complex(double real, double imag);
public:
//声明运算符重载
complex operator+(const complex &A) const;
void display() const;
private:
double m_real; //实部
double m_imag; //虚部
}; complex::complex(): m_real(0.0), m_imag(0.0){ }
complex::complex(double real, double imag): m_real(real), m_imag(imag){ } //实现运算符重载
complex complex::operator+(const complex &A) const{
complex B;
B.m_real = this->m_real + A.m_real;
B.m_imag = this->m_imag + A.m_imag;
return B;
} void complex::display() const{
cout<<m_real<<" + "<<m_imag<<"i"<<endl;
} int main(){
complex c1(4.3, 5.8);
complex c2(2.4, 3.7);
complex c3;
c3 = c1 + c2;
c3.display(); return ;
}

运行结果:

6.7 + 9.5i

1.运算符重载其实就是定义一个函数,在函数体内实现想要的功能,当用到该运算符时,编译器会自动调用这个函数。也就是说,运算符重载是通过函数实现的,它本质上是函数重载。

2.operator是关键字,专门用于定义重载运算符的函数。我们可以将operator 运算符名称这一部分看做函数名,对于上面的代码,函数名就是operator+

3.上面的例子中,我们在 complex 类中重载了运算符+,该重载只对 complex 对象有效。

二.在全局范围内重载运算符

运算符重载函数不仅可以作为类的成员函数,还可以作为全局函数。更改上面的代码,在全局范围内重载+,实现复数的加法运算:

#include <iostream>
using namespace std; class complex{
public:
complex();
complex(double real, double imag);
public:
void display() const;
//声明为友元函数
friend complex operator+(const complex &A, const complex &B);
private:
double m_real;
double m_imag;
}; complex operator+(const complex &A, const complex &B); complex::complex(): m_real(0.0), m_imag(0.0){ }
complex::complex(double real, double imag): m_real(real), m_imag(imag){ }
void complex::display() const{
cout<<m_real<<" + "<<m_imag<<"i"<<endl;
} //在全局范围内重载+
complex operator+(const complex &A, const complex &B){
complex C;
C.m_real = A.m_real + B.m_real;
C.m_imag = A.m_imag + B.m_imag;
return C;
} int main(){
complex c1(4.3, 5.8);
complex c2(2.4, 3.7);
complex c3;
c3 = c1 + c2;
c3.display(); return ;
}

运算符重载函数不是 complex 类的成员函数,但是却用到了 complex 类的 private 成员变量,所以必须在 complex 类中将该函数声明为友元函数。

当执行c3 = c1 + c2;语句时,编译器检测到+号两边都是 complex 对象,就会转换为类似下面的函数调用:

c3 = operator+(c1, c2);

三.重载数学运算符(+-*/)

#include <iostream>
#include <cmath>
using namespace std; //复数类
class Complex{
public: //构造函数
Complex(double real = 0.0, double imag = 0.0): m_real(real), m_imag(imag){ }
public: //运算符重载
//以全局函数的形式重载
friend Complex operator+(const Complex &c1, const Complex &c2);
friend Complex operator-(const Complex &c1, const Complex &c2);
friend Complex operator*(const Complex &c1, const Complex &c2);
friend Complex operator/(const Complex &c1, const Complex &c2);
friend bool operator==(const Complex &c1, const Complex &c2);
friend bool operator!=(const Complex &c1, const Complex &c2);
//以成员函数的形式重载
Complex & operator+=(const Complex &c);
Complex & operator-=(const Complex &c);
Complex & operator*=(const Complex &c);
Complex & operator/=(const Complex &c);
public: //成员函数
double real() const{ return m_real; }
double imag() const{ return m_imag; }
private:
double m_real; //实部
double m_imag; //虚部
}; //重载+运算符
Complex operator+(const Complex &c1, const Complex &c2){
Complex c;
c.m_real = c1.m_real + c2.m_real;
c.m_imag = c1.m_imag + c2.m_imag;
return c;
}
//重载-运算符
Complex operator-(const Complex &c1, const Complex &c2){
Complex c;
c.m_real = c1.m_real - c2.m_real;
c.m_imag = c1.m_imag - c2.m_imag;
return c;
}
//重载*运算符 (a+bi) * (c+di) = (ac-bd) + (bc+ad)i
Complex operator*(const Complex &c1, const Complex &c2){
Complex c;
c.m_real = c1.m_real * c2.m_real - c1.m_imag * c2.m_imag;
c.m_imag = c1.m_imag * c2.m_real + c1.m_real * c2.m_imag;
return c;
}
//重载/运算符 (a+bi) / (c+di) = [(ac+bd) / (c²+d²)] + [(bc-ad) / (c²+d²)]i
Complex operator/(const Complex &c1, const Complex &c2){
Complex c;
c.m_real = (c1.m_real*c2.m_real + c1.m_imag*c2.m_imag) / (pow(c2.m_real, ) + pow(c2.m_imag, ));
c.m_imag = (c1.m_imag*c2.m_real - c1.m_real*c2.m_imag) / (pow(c2.m_real, ) + pow(c2.m_imag, ));
return c;
}
//重载==运算符
bool operator==(const Complex &c1, const Complex &c2){
if( c1.m_real == c2.m_real && c1.m_imag == c2.m_imag ){
return true;
}else{
return false;
}
}
//重载!=运算符
bool operator!=(const Complex &c1, const Complex &c2){
if( c1.m_real != c2.m_real || c1.m_imag != c2.m_imag ){
return true;
}else{
return false;
}
} //重载+=运算符
Complex & Complex::operator+=(const Complex &c){
this->m_real += c.m_real;
this->m_imag += c.m_imag;
return *this;
}
//重载-=运算符
Complex & Complex::operator-=(const Complex &c){
this->m_real -= c.m_real;
this->m_imag -= c.m_imag;
return *this;
}
//重载*=运算符
Complex & Complex::operator*=(const Complex &c){
this->m_real = this->m_real * c.m_real - this->m_imag * c.m_imag;
this->m_imag = this->m_imag * c.m_real + this->m_real * c.m_imag;
return *this;
}
//重载/=运算符
Complex & Complex::operator/=(const Complex &c){
this->m_real = (this->m_real*c.m_real + this->m_imag*c.m_imag) / (pow(c.m_real, ) + pow(c.m_imag, ));
this->m_imag = (this->m_imag*c.m_real - this->m_real*c.m_imag) / (pow(c.m_real, ) + pow(c.m_imag, ));
return *this;
} int main(){
Complex c1(, );
Complex c2(, );
Complex c3(, );
Complex c4(, );
Complex c5(, );
Complex c6(, ); Complex c7 = c1 + c2;
Complex c8 = c1 - c2;
Complex c9 = c1 * c2;
Complex c10 = c1 / c2;
cout<<"c7 = "<<c7.real()<<" + "<<c7.imag()<<"i"<<endl;
cout<<"c8 = "<<c8.real()<<" + "<<c8.imag()<<"i"<<endl;
cout<<"c9 = "<<c9.real()<<" + "<<c9.imag()<<"i"<<endl;
cout<<"c10 = "<<c10.real()<<" + "<<c10.imag()<<"i"<<endl; c3 += c1;
c4 -= c2;
c5 *= c2;
c6 /= c2;
cout<<"c3 = "<<c3.real()<<" + "<<c3.imag()<<"i"<<endl;
cout<<"c4 = "<<c4.real()<<" + "<<c4.imag()<<"i"<<endl;
cout<<"c5 = "<<c5.real()<<" + "<<c5.imag()<<"i"<<endl;
cout<<"c6 = "<<c6.real()<<" + "<<c6.imag()<<"i"<<endl; if(c1 == c2){
cout<<"c1 == c2"<<endl;
}
if(c1 != c2){
cout<<"c1 != c2"<<endl;
} return ;
}

运行结果:

c7 = 35 + 55i
c8 = 15 + 15i
c9 = -450 + 850i
c10 = 1.9 + -0.3i
c3 = 26 + 37i
c4 = -6 + -11i
c5 = 220 + 4460i
c6 = 5.2 + 1.592i
c1 != c2

四.重载下标运算符[]

#include <iostream>
using namespace std; class Array{
public:
Array(int length = );
~Array();
public:
int & operator[](int i);
const int & operator[](int i) const;
public:
int length() const { return m_length; }
void display() const;
private:
int m_length; //数组长度
int *m_p; //指向数组内存的指针
}; Array::Array(int length): m_length(length){
if(length == ){
m_p = NULL;
}else{
m_p = new int[length];
}
} Array::~Array(){
delete[] m_p;
} int& Array::operator[](int i){
return m_p[i];
} const int & Array::operator[](int i) const{
return m_p[i];
} void Array::display() const{
for(int i = ; i < m_length; i++){
if(i == m_length - ){
cout<<m_p[i]<<endl;
}else{
cout<<m_p[i]<<", ";
}
}
} int main(){
int n;
cin>>n; Array A(n);
for(int i = , len = A.length(); i < len; i++){
A[i] = i * ;
}
A.display(); const Array B(n);
cout<<B[n-]<<endl; //访问最后一个元素 return ;
}

运行结果:

0, 5, 10, 15, 20

C++语言基础(17)-运算符重载的更多相关文章

  1. C语言基础知识-运算符与表达式

    C语言基础知识-运算符与表达式 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.常用运算符分类 1>.算术运算符 用于处理四则运算. 2>.赋值运算符 用于将表达式的 ...

  2. GO学习-(6) Go语言基础之运算符

    Go语言基础之运算符 运算符用于在程序运行时执行数学或逻辑运算. 运算符 Go 语言内置的运算符有: 算术运算符 关系运算符 逻辑运算符 位运算符 赋值运算符 算数运算符 运算符 描述 + 相加 - ...

  3. C++_基础_运算符重载2

    内容: (1)只能用成员形式重载的运算符 (2)new/delete操作符的重载 (3)封装和继承的初识 (4)继承的特性 (5)子类及其函数的特性 (6)多重继承和虚继承 1.只能用成员形式重载的运 ...

  4. C++学习6-面向对象编程基础(运算符重载、类的派生与继承、命名空间)

    运算符重载 重载的运算符是具有特殊名字的函数:它们的名字由关键字operator和其后要定义的运算符号共同组成.重载的运算符是遵循函数重载的选择原则,根据不同类型或不同参数来选择不同的重载运算符. 运 ...

  5. C#-语言基础+数据类型+运算符

    一.C#语言基础 新建项目:文件→新建→项目→Visual C#(默认.NET Framework 4.5)→控制台应用程序 1.项目结构 (1)项目后缀 .config ——配置文件(存放配置参数文 ...

  6. C语言基础学习运算符-赋值运算符

    简单赋值 在C语言里,运算符=并不表示相等,而是一个赋值运算符.这意味着,符号=的左边该是一个可修改的变量名,而右边是赋给该变量的值. 如下程序语句: i = i+; 在数学上,该等式无法成立.而作为 ...

  7. C++_基础_运算符重载

    内容: (1)输入输出运算符重载 (2)友元类和友元函数 (3)双目运算符重载 (4)单目运算符重载 (5)不能被重载的运算符 (6)只能定义为成员形式的运算符 1.输入输出运算符重载如: int n ...

  8. [Python学习笔记1]Python语言基础 数学运算符 字符串 列表

    这个系列是我在学习Python语言的过程中记录的笔记,主要是一些知识点汇总,而非学习教程,可供有一定编程基础者参考.文中偏见和不足难以避免,仅供参考,欢迎批评指正. 本系列笔记主要参考文献是官网文档: ...

  9. C语言基础学习运算符-基本算术运算符

    C语言中用于基本算术运算的运算符有:+,-,*,%,/.这些运算符的用法和你想像到的基本无异: 加法运算符 “+”使得它两侧的值被加到一起. 减法运算符“-”用它前面的数减去后面的数. 乘法由“*”表 ...

随机推荐

  1. Target runtime Apache Tomcat 7.1 is not defined 解决方法

    在工作台目录下找到 自己操作的项目的文件夹 /.settings/org.eclipse.wst.common.project.facet.core.xml 打开后,显示 <?xml versi ...

  2. Douglas Peucker算法的C#实现

    一.算法原理 Douglas-Peucker算法 在数字化过程中,需要对曲线进行采样简化,即在曲线上取有限个点,将其变为折线,并且能够在一定程度 上保持原有的形状. 经典的Douglas-Peucke ...

  3. sping boot 入门

    http://www.cnblogs.com/ityouknow/p/5662753.html http://blog.csdn.net/lxhjh/article/details/51711148 ...

  4. Redis编程实践【pub/sub】

    原文:http://shift-alt-ctrl.iteye.com/blog/1867454 Redis或许已经在很多企业开始推广并试水,本文也根据个人的实践,简单描述一下Redis在实际开发过程中 ...

  5. t-sql 笔记(2)

    1.用标点符号分隔的字符串,转换成表 -- SELECT * FROM dbo.split('581:579:519:279:406:361:560',':') ), )) )) AS BEGIN D ...

  6. JS组件系列——自己封装一个上传文件组件

    页面调用: $('#fileUpload').cemsUpload({ errorEmpty:'<s:text name="cupgrade.view.tip.upload.file. ...

  7. struts2之ModelDriven的用法

    在Struts 2中,提供了另外一种直接使用领域对象的方式,就是让action实现com.opensymphony. xwork2.ModelDriven接口.ModelDriven让你可以直接操作应 ...

  8. Ubuntu Tomcat

    启动80端口: 修改server.xml  Connector port=80 修改/etc/default/tomcat  AUTHBIND=yes 查看/etc/authbind/byport/下 ...

  9. JavaScript basics: 2 ways to get child elements with JavaScript

    原文: https://blog.mrfrontend.org/2017/10/2-ways-get-child-elements-javascript/ Along the lines of oth ...

  10. ngnix学习视频

    https://www.bilibili.com/video/av36019080/?p=1