斜率优化问题一般都是决策单调问题。对于这题能够证明单调决策。

令sum[i]=sigma(c [k] ) 1<=k<=i  ,  f[i]=sum[i]+i ,  c=L+1;

首先我们能够写出转移方程  dp[i] = min( dp[j] + (f[i]-f[j]-c)^2 )  。令决策j1<j2。若决策j2更优有

dp[j2]+(f[i]-f[j2]-c)^2<=dp[j1]+(f[i]-f[j1]-c)^2

能够得带 ((dp[j2]+f[j2]^2)-(dp[j1]+f[j1]^2)  )/(f[j2]-f[j1])<2*(f[i]-c)。

优于f[i]是递增的,所以对于t>i的点。决策j2总是比j1更优。那么j1实际上能够从决策集合中删除。后面的就能够用一个队列维护了。

<span style="font-size:14px;">#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <string>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int inf = 0x3fffffff;
const int mmax =50010;
LL C[mmax];
LL L,c;
LL sum[mmax],f[mmax],dp[mmax];
LL sqr(LL x)
{
return x*x;
}
double G(int x)
{
return 1.0*f[x]*f[x]+dp[x];
}
double S(int x)
{
return 2.0*f[x];
}
void calc(int i,int j)
{
dp[i]=dp[j]+sqr(f[i]-f[j]-c);
}
int Q[mmax];
int main()
{
int n;
while(cin>>n>>L)
{
c=L+1;
sum[0]=0;
f[0]=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",&C[i]);
sum[i]=sum[i-1]+C[i];
f[i]=sum[i]+i;
}
int head=0,tail=-1;
dp[0]=0;
Q[++tail]=0;
for(int i=1;i<=n;i++)
{
while(head<tail)
{
double tmp=1.0*(G(Q[head+1])-G(Q[head]))/(S(Q[head+1])-S(Q[head]));
if(tmp<=f[i]-c)
head++;
else
break;
}
calc(i,Q[head]);
while(head<tail)
{
double tmp1=1.0*(G(Q[tail])-G(Q[tail-1]))/(S(Q[tail])-S(Q[tail-1]));
double tmp2=1.0*(G(i)-G(Q[tail]))/(S(i)-S(Q[tail]));
if(tmp1>=tmp2)
tail--;
else
break;
}
Q[++tail]=i;
} printf("%lld\n",dp[n]); }
return 0;
}
</span>

[HNOI2008]玩具装箱toy(dp+斜率优化)的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性

    [HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...

  3. 1010: [HNOI2008]玩具装箱toy [dp][斜率优化]

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  4. BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12451  Solved: 5407[Submit][Status][Discuss] Descript ...

  5. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

  6. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  7. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  8. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  9. 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12280  Solved: 5277[Submit][S ...

  10. [HNOI2008]玩具装箱toy(斜率优化dp)

    前言 这是我写的第一道$dp$斜率优化的题目,$dp$一直都很菜,而且咖啡鸡都说了这是基础的东西,然而看别人对$dp$斜率优化一大堆公式又看不懂就老老实实做几道题目,这个比较实在 描述 给出$n$和$ ...

随机推荐

  1. ubuntu 下终端关于调试C++的命令

    先确定安装了vim 和gcc (c语言)或者g++(c++) 如果没有安装可以在终端输入以下命令: sudo apt-get install build-essential sudo apt-get ...

  2. [xsy1294]sub

    给出一棵$N$个节点的无根树,节点$i$有权值$v_i$.现在有$M$次操作,操作有如下两种: $1\ x\ y$ 将节点$x$的权值$v_x$修改为$y$ $2$ 选择一个联通块(也可以不选择),使 ...

  3. Android之Activity 生命周期

    作用:用户界面的组件,主要用于和用户进行交互.可以理解为手机屏幕的一屏. 生命周期: Resume:“继续”的意思. 由此可见, Activity有四种基本状态: 1) Running:位于屏幕最前端 ...

  4. easyui中一键清空搜索栏搜索条件的思路

    $.fn.clearAllSearchPanel = function () { var $id = $(this); $id.find(".form-control").each ...

  5. Cisco模拟器Web-IOU使用说明 转

    http://blog.sina.com.cn/s/blog_af0abf1f0102uztk.html   GNS3作为使用最多的Cisco官方模拟器,是因为它使用简单,所有设置图形化,是一款非常强 ...

  6. Coherence的NameService

    Coherence*Extend模式下客户端需要连接一个或多个proxy Server从而接入集群,在一些比较大型的环境中,Proxy Server往往比较多,一旦修改起来需要修改每个配置文件,在Co ...

  7. jenkins结合docker

    参考:https://m.aliyun.com/yunqi/articles/80459?spm=5176.mtagdetail.0.0.vJJ8Gj 上面这篇文章讲述了一种工作思路:CICD(持续集 ...

  8. iOS:socket通信

    ios开发 Socket通信 Socket描述了一个IP.端口对.它简化了程序员的操作,知道对方的IP以及PORT就可以给对方发送消息,再由服务器端来处理发送的这些消息.所以,Socket一定包含了通 ...

  9. cdev结构体及其相关函数

    一.在Linux2.6内核中一个字符设备用cdev结构来描述,其定义如下: struct cdev { struct kobject kobj; struct module *owner; //所属模 ...

  10. Java开发中的23种设计模式详解 【转】

    创建型模式,共五种:工厂方法模式.抽象工厂模式.单例模式.建造者模式.原型模式. 行为型模式,共十一种:策略模式.模板方法模式.观察者模式.迭代子模式.责任链模式.命令模式.备忘录模式.状态模式.访问 ...