[Codeforces 23D] Tetragon
Brief Intro:
给3条相同长度的边的中点,问是否存在一个严格凸四边形
Algorithm:
明显只要求出一个点就能利用对称性算出其他点的坐标
设中点K,L,M分别在边AB,BC,CD上,易知B、C分别在KL、LM的垂直平分线上
但仍需一个点才能确定B点的位置
于是我们想办法将现有的信息整合:做M关于L的对称点M’,从而发现M’B=KB=LB
接下来手算出KL、LM’的垂直平分线的直线方程
用((b1c2-b2c1)/(a1b2-a2b1),(a2c1-a1c2)/(a1b2-a2b1))求出交点即可
注意:求完4个点后,仍要判断正确性(是否为凸四边形):
判断顺时针的4个三角形方向是否相同(叉积的正负性是否相同)
Code:
#include <bits/stdc++.h> using namespace std;
#define X first
#define Y second const double eps=1e-;
typedef pair<double,double> P;
int T;
P a,b,c; double Cross(P a,P b,P c)
{
return (a.X*b.Y+b.X*c.Y+c.X*a.Y)-(b.X*a.Y+c.X*b.Y+a.X*c.Y);
} inline int Read()
{
char ch;int num,f=;
while(!isdigit(ch=getchar())) f|=(ch=='-');
num=ch-'';
while(isdigit(ch=getchar())) num=num*+ch-'';
return f?-num:num;
} P read()
{
P t;t.X=Read();t.Y=Read();
return t;
} bool check(P x,P y,P z)
{
double A0=*(x.X-y.X),A1=*(y.X-z.X);
double B0=*(x.Y-y.Y),B1=*(y.Y-z.Y);
double C0=y.X*y.X-x.X*x.X+y.Y*y.Y-x.Y*x.Y;
double C1=-*(y.X*y.X+y.Y*y.Y)-(z.X*z.X+z.Y*z.Y)+*(y.X*z.X+y.Y*z.Y); P A,B,C,D;
A.X=(B0*C1-B1*C0)/(A0*B1-A1*B0);A.Y=(A1*C0-A0*C1)/(A0*B1-A1*B0);
B.X=*y.X-A.X;B.Y=*y.Y-A.Y;
C.X=*x.X-A.X;C.Y=*x.Y-A.Y;
D.X=*z.X-B.X;D.Y=*z.Y-B.Y; double P1=Cross(C,A,B),P2=Cross(A,B,D),P3=Cross(B,D,C),P4=Cross(D,C,A); //判断方向 if((P1> && P2> && P3> && P4>) || (P1< && P2< && P3< && P4<))
{
printf("YES\n");
printf("%0.10lf %0.10lf ",A.X,A.Y);
printf("%0.10lf %0.10lf ",B.X,B.Y);
printf("%0.10lf %0.10lf ",D.X,D.Y);
printf("%0.10lf %0.10lf\n",C.X,C.Y);
return true;
}
return false;
} bool solve()
{
if(Cross(a,b,c) && (check(a,b,c) || check(c,a,b) || check(b,c,a)))
return true;
return false;
} int main()
{
scanf("%d",&T); while(T--)
{
a=read();b=read();c=read();
if(!solve()) printf("NO\n\n");
}
return ;
}
Review
1、对凸四边形的判断:
顺时针旋转的每个三角形叉积的正负性是否相同
2、学会利用对称点的方式整合信息
[Codeforces 23D] Tetragon的更多相关文章
- Educational Codeforces Round 23D
给n个数求每个子区间的价值,区间的价值是最大值-最小值 套路题= =,分别算最大值和最小值的贡献,用并查集维护,把相邻点连一条边,然后sort,求最大是按边价值(两个点的最大价值)小的排,求最小是按最 ...
- python爬虫学习(5) —— 扒一下codeforces题面
上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
- 【Codeforces 738A】Interview with Oleg
http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
- CodeForces - 274B Zero Tree
http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...
- CodeForces - 261B Maxim and Restaurant
http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...
- CodeForces - 696B Puzzles
http://codeforces.com/problemset/problem/696/B 题目大意: 这是一颗有n个点的树,你从根开始游走,每当你第一次到达一个点时,把这个点的权记为(你已经到过不 ...
随机推荐
- [NOIP2002] 字串变换 宽搜+深度优化
这道题硬是让我用STL水过.......而且题解里说的什么双向宽搜,交替扩展............... 这道题反正,STL用就用吧,但是状态数可以卡到千亿级别,因为这个东西是阶乘扩展的,然后我们发 ...
- YUI Compressor是如何压缩JS代码的?
YUI Compressor 压缩 JavaScript 的内容包括: 移除注释 移除额外的空格 细微优化 标识符替换(Identifier Replacement) YUI Compressor 包 ...
- 门户系统整合sso cookie共享及显示用户信息
1.1 门户系统整合sso 在门户系统点击登录连接跳转到登录页面.登录成功后,跳转到门户系统的首页,在门户系统中需要从cookie中 把token取出来.所以必须在登录成功后把token写入cooki ...
- Rem与em的简单理解
Rem与em的简单理解 Em单位与像素px的转换 所得的像素值 = 当前元素的font-size * em的值 比如:div的font-size:12px 10em等同于120px 12*10 =12 ...
- HDU 4334 Trouble (数组合并)
Trouble Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- WebSocket最简易理解,term.js插件的使用
介绍WebSocket WebSocket我想大家并不陌生,无论你的的工作中是否用到了它,都或多或少听说过,它是h5中新增的,在某些方面可以很好的替代我们一直沿用的ajax技术,甚至更加的出色.但是它 ...
- 斜率优化DP讲解
对于斜率优化的DP转移方程,一般以w[i]=max(w[j]+(sum[i]-sum[j])*v)的1D1D形式为主,直观看来就是前j个为若干个阶段,第j+1到第i个为一个阶段,每个阶段有自己的代价或 ...
- inno setup 5 添加快捷方式默认选中
转载:https://www.cnblogs.com/x_wukong/p/5012412.html https://zhidao.baidu.com/question/312006120.html ...
- 【洛谷】xht模拟赛 题解
前言 大家期待已久并没有的题解终于来啦~ 这次的T1和HAOI2016撞题了...深表歉意...表示自己真的不知情... 天下的水题总是水得相似,神题各有各的神法.--<安娜·卡列妮娜> ...
- [ 手记 ] Oracle 11g安装过程
安装环境: 操作系统:Centos6.4 Desktop 主机名:oracle 内存:2G 安装前准备: 修改主机名: [root@oracle ~]# vim /etc ...