[xsy1294]sub
给出一棵$N$个节点的无根树,节点$i$有权值$v_i$。现在有$M$次操作,操作有如下两种:
$1\ x\ y$ 将节点$x$的权值$v_x$修改为$y$
$2$ 选择一个联通块(也可以不选择),使得点权和最大。输出这个点权和
树剖==
考虑先做一次DP,$f_x$表示在以$x$为根的子树中,选择$x$的情况下的最大联通块和,那么$f_x=v_x+\sum\limits_{u\in son_x}\max(f_u,0)$($v_x$表示点$x$的权值)
然后树剖,每一个点的权值设为$f_x-f_{heavy_x}$($heavy_x$表示点$x$的重儿子),然后可以发现,对于一条重链所代表的区间,求最大子段和就是这条链上所有点的最大答案
为了避免不同重链之间互相影响,我们可以在重链之间加上一个空节点,权值为$-\infty$
考虑修改,修改一个点只会影响它沿重链往上跳时经过的(重链顶端节点的父亲节点),所以我们只需要修改重链顶端的父亲节点就好了
#include<stdio.h> typedef long long ll; const ll inf=1000000000ll; ll max(ll a,ll b){return a>b?a:b;} struct zt{ ll s,ms,ls,rs; }f[400010]; zt merge(zt l,zt r){ zt c; c.s=l.s+r.s; c.ls=max(l.ls,l.s+r.ls); c.rs=max(r.rs,r.s+l.rs); c.ms=max(max(l.ms,r.ms),l.rs+r.ls); return c; } void pushup(int x){f[x]=merge(f[x<<1],f[x<<1|1]);} ll p[200010]; void build(int l,int r,int x){ if(l==r){ f[x].s=p[l]; f[x].ms=f[x].ls=f[x].rs=max(p[l],0); return; } int mid=(l+r)>>1; build(l,mid,x<<1); build(mid+1,r,x<<1|1); pushup(x); } void modify(int p,ll v,int l,int r,int x){ if(l==r){ f[x].s+=v; f[x].ms=f[x].ls=f[x].rs=max(f[x].s,0); return; } int mid=(l+r)>>1; if(p<=mid) modify(p,v,l,mid,x<<1); else modify(p,v,mid+1,r,x<<1|1); pushup(x); } zt query(int L,int R,int l,int r,int x){ if(L<=l&&r<=R)return f[x]; int mid=(l+r)>>1; if(R<=mid)return query(L,R,l,mid,x<<1); if(L>mid)return query(L,R,mid+1,r,x<<1|1); return merge(query(L,R,l,mid,x<<1),query(L,R,mid+1,r,x<<1|1)); } int h[100010],nex[200010],to[200010],v[100010],fa[100010],siz[100010],son[100010],bl[100010],pos[100010],M; ll dp[100010]; void add(int a,int b){ M++; to[M]=b; nex[M]=h[a]; h[a]=M; } void dfs(int x){ int i,mx=0,k=0; siz[x]=1; dp[x]=v[x]; for(i=h[x];i;i=nex[i]){ if(to[i]!=fa[x]){ fa[to[i]]=x; dfs(to[i]); dp[x]+=max(dp[to[i]],0); siz[x]+=siz[to[i]]; if(siz[to[i]]>mx){ mx=siz[to[i]]; k=to[i]; } } } son[x]=k; } void dfs(int x,int chain){ pos[x]=++M; bl[x]=chain; if(son[x]){ dp[x]-=max(dp[son[x]],0); dfs(son[x],chain); } p[pos[x]]=dp[x]; for(int i=h[x];i;i=nex[i]){ if(to[i]!=fa[x]&&to[i]!=son[x]){ M++; p[M]=-inf; dfs(to[i],to[i]); } } } void modify(int x,ll d){ d-=v[x]; v[x]+=d; ll t1,t2; while(x){ t1=query(pos[bl[x]],M,1,M,1).ls; modify(pos[x],d,1,M,1); t2=query(pos[bl[x]],M,1,M,1).ls; d=t2-t1; x=fa[bl[x]]; } } int main(){ int n,m,i,x,y; scanf("%d%d",&n,&m); for(i=1;i<=n;i++)scanf("%d",v+i); for(i=1;i<n;i++){ scanf("%d%d",&x,&y); add(x,y); add(y,x); } dfs(1); M=0; dfs(1,1); build(1,M,1); while(m--){ scanf("%d",&i); if(i==1){ scanf("%d%d",&x,&y); modify(x,y); }else printf("%d\n",f[1].ms); } }
[xsy1294]sub的更多相关文章
- 【XSY1294】sub 树链剖分
题目描述 给你一棵\(n\)个点的无根树,节点\(i\)有权值\(v_i\).现在有\(m\)次操作,操作有如下两种: \(1~x~y\):把\(v_x\)改成\(y\). \(2\):选择一个连通块 ...
随机推荐
- [SCOI2007] 蜥蜴 (最大流)
[SCOI2007] 蜥蜴 题目背景 07四川省选 题目描述 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1 ...
- [hdu 4348]区间修改区间查询可持久化线段树
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4348 一开始把lazy标记给push_down了,后来发现这样会让持久化变乱,然后想到不用push_d ...
- AnnotationConfigApplicationContext.的用法的核心代码
public static void main(String[] args) {ApplicationContext ctx = new AnnotationConfigApplicationCont ...
- 2015年网易校招Java开发工程师(技术架构)在线笔试题
1. 程序和进程的本质区别是? A.在外存和内存存储 B.非顺序和顺序执行机器指令 C.独占使用和分时使用计算机资源 D.静态和动态特征 参考答案分析: 进程与应用程序的区别: 进程(Process ...
- Virtualization solutions on Linux systems - KVM and VirtualBox
Introduction Virtualization packages are means for users to run various operating systems without &q ...
- 知问前端——日历UI(二)
datapicker外观选项 属性 默认值/类型 说明 disabled false/布尔值 禁用日历 numberOfMonths 1/数值 日历中同时显示的月份个数.默认为1,如果设置3就同时显示 ...
- 【2016-09-27-DP小练】
得分250..我真是个250... 犯了一些很搞笑的错.. f[i][j][k]表示第i个苹果,现在在j这个位置,还能用k次转移. 用i去更新i+1. 时间复杂度1000*2*30: 转移方程有个地方 ...
- ZOJ1450 Minimal Circle
You are to write a program to find a circle which covers a set of points and has the minimal area. T ...
- 卡片选项页面 JTabbedPane 的使用
package first; import javax.swing.*; import java.awt.*; import java.awt.event.*; class TtpDemo exten ...
- [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环
题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...