给出一棵$N$个节点的无根树,节点$i$有权值$v_i$。现在有$M$次操作,操作有如下两种:

$1\ x\ y$ 将节点$x$的权值$v_x$修改为$y$

$2$ 选择一个联通块(也可以不选择),使得点权和最大。输出这个点权和

树剖==

考虑先做一次DP,$f_x$表示在以$x$为根的子树中,选择$x$的情况下的最大联通块和,那么$f_x=v_x+\sum\limits_{u\in son_x}\max(f_u,0)$($v_x$表示点$x$的权值)

然后树剖,每一个点的权值设为$f_x-f_{heavy_x}$($heavy_x$表示点$x$的重儿子),然后可以发现,对于一条重链所代表的区间,求最大子段和就是这条链上所有点的最大答案

为了避免不同重链之间互相影响,我们可以在重链之间加上一个空节点,权值为$-\infty$

考虑修改,修改一个点只会影响它沿重链往上跳时经过的(重链顶端节点的父亲节点),所以我们只需要修改重链顶端的父亲节点就好了

#include<stdio.h>
typedef long long ll;
const ll inf=1000000000ll;
ll max(ll a,ll b){return a>b?a:b;}
struct zt{
	ll s,ms,ls,rs;
}f[400010];
zt merge(zt l,zt r){
	zt c;
	c.s=l.s+r.s;
	c.ls=max(l.ls,l.s+r.ls);
	c.rs=max(r.rs,r.s+l.rs);
	c.ms=max(max(l.ms,r.ms),l.rs+r.ls);
	return c;
}
void pushup(int x){f[x]=merge(f[x<<1],f[x<<1|1]);}
ll p[200010];
void build(int l,int r,int x){
	if(l==r){
		f[x].s=p[l];
		f[x].ms=f[x].ls=f[x].rs=max(p[l],0);
		return;
	}
	int mid=(l+r)>>1;
	build(l,mid,x<<1);
	build(mid+1,r,x<<1|1);
	pushup(x);
}
void modify(int p,ll v,int l,int r,int x){
	if(l==r){
		f[x].s+=v;
		f[x].ms=f[x].ls=f[x].rs=max(f[x].s,0);
		return;
	}
	int mid=(l+r)>>1;
	if(p<=mid)
		modify(p,v,l,mid,x<<1);
	else
		modify(p,v,mid+1,r,x<<1|1);
	pushup(x);
}
zt query(int L,int R,int l,int r,int x){
	if(L<=l&&r<=R)return f[x];
	int mid=(l+r)>>1;
	if(R<=mid)return query(L,R,l,mid,x<<1);
	if(L>mid)return query(L,R,mid+1,r,x<<1|1);
	return merge(query(L,R,l,mid,x<<1),query(L,R,mid+1,r,x<<1|1));
}
int h[100010],nex[200010],to[200010],v[100010],fa[100010],siz[100010],son[100010],bl[100010],pos[100010],M;
ll dp[100010];
void add(int a,int b){
	M++;
	to[M]=b;
	nex[M]=h[a];
	h[a]=M;
}
void dfs(int x){
	int i,mx=0,k=0;
	siz[x]=1;
	dp[x]=v[x];
	for(i=h[x];i;i=nex[i]){
		if(to[i]!=fa[x]){
			fa[to[i]]=x;
			dfs(to[i]);
			dp[x]+=max(dp[to[i]],0);
			siz[x]+=siz[to[i]];
			if(siz[to[i]]>mx){
				mx=siz[to[i]];
				k=to[i];
			}
		}
	}
	son[x]=k;
}
void dfs(int x,int chain){
	pos[x]=++M;
	bl[x]=chain;
	if(son[x]){
		dp[x]-=max(dp[son[x]],0);
		dfs(son[x],chain);
	}
	p[pos[x]]=dp[x];
	for(int i=h[x];i;i=nex[i]){
		if(to[i]!=fa[x]&&to[i]!=son[x]){
			M++;
			p[M]=-inf;
			dfs(to[i],to[i]);
		}
	}
}
void modify(int x,ll d){
	d-=v[x];
	v[x]+=d;
	ll t1,t2;
	while(x){
		t1=query(pos[bl[x]],M,1,M,1).ls;
		modify(pos[x],d,1,M,1);
		t2=query(pos[bl[x]],M,1,M,1).ls;
		d=t2-t1;
		x=fa[bl[x]];
	}
}
int main(){
	int n,m,i,x,y;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++)scanf("%d",v+i);
	for(i=1;i<n;i++){
		scanf("%d%d",&x,&y);
		add(x,y);
		add(y,x);
	}
	dfs(1);
	M=0;
	dfs(1,1);
	build(1,M,1);
	while(m--){
		scanf("%d",&i);
		if(i==1){
			scanf("%d%d",&x,&y);
			modify(x,y);
		}else
			printf("%d\n",f[1].ms);
	}
}

[xsy1294]sub的更多相关文章

  1. 【XSY1294】sub 树链剖分

    题目描述 给你一棵\(n\)个点的无根树,节点\(i\)有权值\(v_i\).现在有\(m\)次操作,操作有如下两种: \(1~x~y\):把\(v_x\)改成\(y\). \(2\):选择一个连通块 ...

随机推荐

  1. [SCOI2007] 蜥蜴 (最大流)

    [SCOI2007] 蜥蜴 题目背景 07四川省选 题目描述 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1 ...

  2. [hdu 4348]区间修改区间查询可持久化线段树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4348 一开始把lazy标记给push_down了,后来发现这样会让持久化变乱,然后想到不用push_d ...

  3. AnnotationConfigApplicationContext.的用法的核心代码

    public static void main(String[] args) {ApplicationContext ctx = new AnnotationConfigApplicationCont ...

  4. 2015年网易校招Java开发工程师(技术架构)在线笔试题

    1.  程序和进程的本质区别是? A.在外存和内存存储 B.非顺序和顺序执行机器指令 C.独占使用和分时使用计算机资源 D.静态和动态特征 参考答案分析: 进程与应用程序的区别: 进程(Process ...

  5. Virtualization solutions on Linux systems - KVM and VirtualBox

    Introduction Virtualization packages are means for users to run various operating systems without &q ...

  6. 知问前端——日历UI(二)

    datapicker外观选项 属性 默认值/类型 说明 disabled false/布尔值 禁用日历 numberOfMonths 1/数值 日历中同时显示的月份个数.默认为1,如果设置3就同时显示 ...

  7. 【2016-09-27-DP小练】

    得分250..我真是个250... 犯了一些很搞笑的错.. f[i][j][k]表示第i个苹果,现在在j这个位置,还能用k次转移. 用i去更新i+1. 时间复杂度1000*2*30: 转移方程有个地方 ...

  8. ZOJ1450 Minimal Circle

    You are to write a program to find a circle which covers a set of points and has the minimal area. T ...

  9. 卡片选项页面 JTabbedPane 的使用

    package first; import javax.swing.*; import java.awt.*; import java.awt.event.*; class TtpDemo exten ...

  10. [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环

    题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...