[Luogu4294]

题解 : 斯坦纳树

\(dp[i][j]\) 表示以\(i\)号节点为根,当前状态为\(j\)(与\(i\)连通的点为\(1\))

当根\(i\)不改变时状态转移方程是:

\(dp[i][j] = \min_{s \in j}\{dp[i][s] + dp[i][\complement_js] - val[i]\}\)

当根改变时,要求\(i,k\)相邻 :

\(dp[i][j] = \min\{dp[k][j] + val[i]\}\)

记录\(pre[i][now]\)为由哪个状态转移而来,便于输出方案

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
typedef long long LL;
typedef pair<int,int> pii;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} int f[101][1111],a[101],d[4][2]={1,0,0,1,0,-1,-1,0};
bool inq[101],ans[11][11];
pii pre[101][1111];
queue <int> q;
int n,m,K,rt; inline void SPFA(int now){
while(!q.empty()){
int u=q.front();q.pop();inq[u]=0;
for(int i=0;i<4;i++){
int x=u/m,y=u%m,tx=x+d[i][0],ty=y+d[i][1],v=tx*m+ty;
if(tx<0||tx>=n||ty<0||ty>=m) continue;
if(f[u][now]+a[v]<f[v][now]){
f[v][now]=f[u][now]+a[v];
if(!inq[v]) inq[v]=1,q.push(v);
pre[v][now]=pii(u,now);//状态为now定义为与根相连的点的状态,只有相邻的才能转移
}
}
}
} inline void dfs(int x,int y,int now){
int u=x*m+y;
if(!pre[u][now].second) return;
ans[x][y]=1;
if(pre[u][now].first==u) dfs(x,y,now^pre[u][now].second);//如果是由自己更新过来,就要往两个方向回溯
dfs(pre[u][now].first/m,pre[u][now].first%m,pre[u][now].second);//否则就只往一个方向
} int main(){
n=read(),m=read();
memset(f,0x3f,sizeof f);
for(int i=0,now=0;i<n;i++)
for(int j=0;j<m;j++,now++){
a[now]=read();
if(!a[now]) f[now][1<<(K++)]=0,rt=now;
}
for(int now=1;now<(1<<K);now++){
for(int i=0;i<n*m;i++){
for(int s=now&(now-1);s;s=(s-1)&now)
if(f[i][s]+f[i][now^s]-a[i]<f[i][now]){
f[i][now]=f[i][s]+f[i][now^s]-a[i];//用自己的信息更新
pre[i][now]=pii(i,s);
}
if(f[i][now]<f[0][0])
q.push(i),inq[i]=1;
}
SPFA(now);//更新状态为now的全部的值
}
printf("%d\n",f[rt][(1<<K)-1]);
dfs(rt/m,rt%m,(1<<K)-1);
for(int i=0,now=0;i<n;i++){
for(int j=0;j<m;j++,now++){
if(!a[now]) putchar('x');
else putchar(ans[i][j]?'o':'_');
}
putchar('\n');
}
}

[WC2008]游览计划(斯坦纳树)的更多相关文章

  1. 【BZOJ2595】[Wc2008]游览计划 斯坦纳树

    [BZOJ2595][Wc2008]游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为 ...

  2. Luogu 4294 [WC2008]游览计划 | 斯坦纳树

    题目链接 Luogu 4294 (我做这道题的时候BZOJ全站的SPJ都炸了 提交秒WA 幸好有洛谷) 题解 这道题是[斯坦纳树]的经典例题.斯坦纳树是这样一类问题:带边权无向图上有几个(一般约10个 ...

  3. bzoj2595: [Wc2008]游览计划 斯坦纳树

    斯坦纳树是在一个图中选取某些特定点使其联通(可以选取额外的点),要求花费最小,最小生成树是斯坦纳树的一种特殊情况 我们用dp[i][j]来表示以i为根,和j状态是否和i联通,那么有 转移方程: dp[ ...

  4. BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

    Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2030  Solved: 986[Submit][Status][ ...

  5. BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树

    [题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...

  6. bzoj2595 [Wc2008]游览计划——斯坦纳树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2595 今天刚学了斯坦纳树,还不太会,写一道题练习一下: 参考了博客:http://www.c ...

  7. P4294 [WC2008]游览计划 (斯坦纳树)

    题目链接 差不多是斯坦纳树裸题,不过边权化成了点权,这样在合并两棵子树时需要去掉根结点的权值,防止重复. 题目还要求输出解,只要在转移时记录下路径,然后dfs一遍就好了. #include<bi ...

  8. 洛谷4294 [WC2008]游览计划——斯坦纳树

    题目:https://www.luogu.org/problemnew/show/P4294 大概是状压.两种转移,一个是以同一个点为中心,S由自己的子集拼起来:一个是S相同.中心不同的同层转移. 注 ...

  9. 【BZOJ-2595】游览计划 斯坦纳树

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1518  Solved: 7 ...

  10. [WC2008]游览计划 解题报告

    [WC2008]游览计划 斯坦纳树板子题,其实就是状压dp 令\(dp_{i,s}\)表示任意点\(i\)联通关键点集合\(s\)的最小代价 然后有转移 \[ dp_{i,S}=\min_{T\in ...

随机推荐

  1. 供参考的 php 学习路线

    供参考的 php 学习路线   第一阶段第一讲,WEB基础     1.1 网站基本知识: 1.2 网络协议介绍: 1.3 B/S与C/S结构的区别: 1.4 WEB编程.网站开发技术介绍.      ...

  2. XML数据格式简介

    ---------------siwuxie095                             XML 简介     XML,即 可扩展标记语言(Extensible Markcup La ...

  3. mybatis spring 框架整合

    driver=com.mysql.jdbc.Driver url=jdbc:mysql://localhost:3306/test user=LF password=LF <?xml versi ...

  4. golang学习

    1. 学习资源列表 https://github.com/golang/go/wiki 2. 最快的入门方法 直接通过代码学习 https://tour.go-zh.org 3. go指南 https ...

  5. Mac下MongoDB enterprise版的安装

    1. 访问mongodb下载中心,https://www.mongodb.com/download-center#enterprise,选择OS X x64系统,点击下载,可能会出一个页面让你填写联系 ...

  6. Java日志组件logback使用:加载非类路径下的配置文件并设置定时更新

    Java日志组件logback使用:加载非类路径下的配置文件并设置定时更新 摘自: https://blog.csdn.net/johnson_moon/article/details/7887449 ...

  7. 通过批处理操作注册表实现winform应用中Webbrowser以指定的IE版本加载网页

    通过批处理操作注册表实现winform应用中Webbrowser以指定的IE版本加载网页 rem 强制WebBrowser控件使用指定IE版本显示应用的网页 IF EXIST %windir%\Sys ...

  8. js原型链prototype与__proto__以及new表达式

    对象模型的细节 https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Guide/Details_of_the_Object_Model

  9. 【Head First Java 读书笔记】(六)认识Java API

    第五章 使用Java函数库 ArrayList add(Object elem) remove(int index) remove(Object elem) contains(Object elem) ...

  10. javaScript入门之常用事件

    JS中的常用事件 onfocus/onblur:聚焦离焦事件,用于表单校验的时候比较合适. onclick/ondblclick:鼠标单击和双击事件 onkeydown/onkeypress:搜索引擎 ...