题目描述

排排坐,吃果果,生果甜嗦嗦,大家笑呵呵。你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和。红星幼儿园的小朋友们排起了长长地队伍,准备吃果果。不过因为小朋友们的身高有所区别,排成的队伍高低错乱,极不美观。设第i个小朋友的身高为hi,我们定义一个序列的杂乱程度为:满足i<j且hi>hj的(i,j)数量。幼儿园阿姨每次会选出两个小朋友,交换他们的位置,请你帮忙计算出每次交换后,序列的杂乱程度。为方便幼儿园阿姨统计,在未进行任何交换操作时,你也应该输出该序列的杂乱程度。

输入

第一行为一个正整数n,表示小朋友的数量;第二行包含n个由空格分隔的正整数h1,h2,…,hn,依次表示初始队列中小朋友的身高;第三行为一个正整数m,表示交换操作的次数;以下m行每行包含两个正整数ai和bi,表示交换位置ai与位置bi的小朋友。

输出

输出文件共m行,第i行一个正整数表示交换操作i结束后,序列的杂乱程度。

样例输入

3
130 150 140
2
2 3
1 3

样例输出

1
0
3


题解

分块+树状数组

题目描述不清,这里已补好,所求即逆序对的个数。

求逆序对我们可以使用树状数组。但是树状数组是离线的,也就是说每次交换都必须重新扫一遍,这样肯定会T。

由于每次交换时,除了这两个数及它们之间的数以外都是不需要改动的,只要找出中间的即可。

我们有分块大法。

把所有元素分成√n 个块,对每个块建立一个树状数组,就可以得出两个数之间所有整块的不同范围内数的个数。

然后对于多出来的那些数,直接暴力扫一下即可。由于它们都不是整块,所以不会有超过√n 个数。

这里偷了点懒没有if else,把符合条件加加减减直接变成加减条件成立性,应该不难理解。

时间复杂度O(n*√n*logn)。

需要注意的是两个数在同一个块内的处理,以及x>y的特判。

还有,题目中可能会出现相同的数,因此不能看作非小即大,需要分开处理。

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
struct data
{
int h , p;
}a[20010];
int v[20010] , top , f[150][20010];
bool cmp1(data a , data b)
{
return a.h < b.h;
}
bool cmp2(data a , data b)
{
return a.p < b.p;
}
void update(int p , int x , int a)
{
int i;
for(i = x ; i <= top ; i += i & (-i))
f[p][i] += a;
}
int query(int p , int x)
{
int i , ans = 0;
for(i = x ; i ; i -= i & (-i))
ans += f[p][i];
return ans;
}
int main()
{
int n , m , i , j , si , ans = 0 , x , y;
scanf("%d" , &n);
si = (int)sqrt(n);
for(i = 0 ; i < n ; i ++ )
scanf("%d" , &a[i].h) , a[i].p = i;
sort(a , a + n , cmp1);
for(i = 0 ; i < n ; i ++ )
{
if(a[i].h != v[top]) v[++top] = a[i].h;
a[i].h = top;
}
sort(a , a + n , cmp2);
for(i = 0 ; i < n ; i ++ )
{
for(j = 0 ; j <= i / si ; j ++ ) ans -= query(j , a[i].h);
ans += i;
update(i / si , a[i].h , 1);
}
printf("%d\n" , ans);
scanf("%d" , &m);
while(m -- )
{
scanf("%d%d" , &x , &y);
x -- ; y -- ;
if(x > y) swap(x , y);
if(x / si == y / si)
for(i = x + 1 ; i < y ; i ++ )
ans += (a[i].h > a[x].h) + (a[i].h < a[y].h) - (a[i].h < a[x].h) - (a[i].h > a[y].h);
else
{
for(i = x / si + 1 ; i < y / si ; i ++ )
ans += (si - query(i , a[x].h)) + query(i , a[y].h - 1) - query(i , a[x].h - 1) - (si - query(i , a[y].h));
for(i = x + 1 ; i < (x / si + 1) * si ; i ++ )
ans += (a[i].h > a[x].h) + (a[i].h < a[y].h) - (a[i].h < a[x].h) - (a[i].h > a[y].h);
for(i = y / si * si ; i < y ; i ++ )
ans += (a[i].h > a[x].h) + (a[i].h < a[y].h) - (a[i].h < a[x].h) - (a[i].h > a[y].h);
}
ans += (a[x].h < a[y].h) - (a[x].h > a[y].h);
update(x / si , a[x].h , -1) , update(y / si , a[y].h , -1);
swap(a[x].h , a[y].h);
update(x / si , a[x].h , 1) , update(y / si , a[y].h , 1);
printf("%d\n" , ans);
}
return 0;
}

【bzoj2141】排队 分块+树状数组的更多相关文章

  1. BZOJ2141:排队(分块,树状数组)

    Description 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家 乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们 ...

  2. BZOJ_2141_排队_树状数组+分块

    BZOJ2141_排队_树状数组+分块 Description 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家 乐和和.红星幼儿园的小朋友们排起了 ...

  3. 【BZOJ 3295】动态逆序对 - 分块+树状数组

    题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...

  4. 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树

    题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...

  5. 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu

    https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...

  6. bzoj2141: 排队(分块+树状数组)

    块套树为什么会这么快.. 先跑出原序列逆序对. 显然交换两个位置$l,r$,对$[1,l),(r,n]$里的数没有影响,所以只需要考虑$[l,r]$内的数. 设$(l,r)$内的数$a_i$,则按以下 ...

  7. BZOJ 2141 排队(分块+树状数组)

    题意 第一行为一个正整数n,表示小朋友的数量:第二行包含n个由空格分隔的正整数h1,h2,…,hn,依次表示初始队列中小朋友的身高:第三行为一个正整数m,表示交换操作的次数:以下m行每行包含两个正整数 ...

  8. Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2886  Solved: 924[Submit][Stat ...

  9. 【XSY2111】Chef and Churus 分块 树状数组

    题目描述 有一个长度为\(n\)的数组\(A\)和\(n\)个区间\([l_i,r_i]\),有\(q\)次操作: \(1~x~y\):把\(a_x\)改成\(y\) \(2~x~y\):求第\(l\ ...

随机推荐

  1. LeetCode 相交链表

    基本思路 先计算出两个链表的长度 O(n) 将长的一个链表的指示指针移动到和短链表相同长度 O(n) 两个链表指示指针同时向前移动,直到二者相同或者NULL 代码实现 /** * Definition ...

  2. httpd的prefork、worker、event

    Apache(httpd) 有3种核心MPM(Multi-Processing Module,多进程处理模块)工作模式,分别是prefork,worker和event,其中httpd-2.2的even ...

  3. InheritableThreadLocal线程复用

    引自:http://www.cnblogs.com/sweetchildomine/p/6575666.html 虽然使用AOP可以获取方法签名,但是如果要获取方法中计算得出的数据,那么就得使用Thr ...

  4. vuex重置所有state(可定制)

    在正式场景中我们经常遇到一个问题,就是登出页面或其他操作的时候,我们需要重置所有的vuex,让其变为初始状态,那么,就涉及到了多种方法:1.页面刷新: window.location.reload() ...

  5. 【mvrp多协议vlan注册协议给予三种注册方式的验证】

    MVRP 多vlan注册协议给予三种注册模式的配置 一:根据项目需求搭建好拓扑图如下 二:配置: 首先对项目做理论分析,sw1,sw2,sw3所组成的直连网络中,为使不同的PC之间进行通信,按vlan ...

  6. Leecode刷题之旅-C语言/python-136只出现一次的数字

    /* * @lc app=leetcode.cn id=136 lang=c * * [136] 只出现一次的数字 * * https://leetcode-cn.com/problems/singl ...

  7. HyperLedger Fabric 1.4 交易流程(6.3)

    区块链最主要的特性之一是去中心化,没有了中心机构的集中处理,为了达成数据的一致性,就需要网络中全民参与管理,并以某种方法达成共识,所以区块链的交易流程也就是共识的过程.       在Fabric中, ...

  8. ORACLE中order by造成分页不正确原因分析

     工作中遇到的问题: 为调用方提供一个分页接口时,调用方一直反应有部分数据取不到,且取到的数据有重复的内容,于是我按以下步骤排查了下错误. 1.检查分页页码生成规则是否正确. 2.检查SQL语句是否正 ...

  9. .NET中调用不安全代码

           .NET中是不允许不安全的代码的,比如指针等.但有些特殊场合还是需要用到指针,这时候就需要在你的代码块上加上unsafe标签.如: 1: unsafe static void Main( ...

  10. 『MongoDB』集合更新操作

    参考 定义 db.collection.update(query, update, options) 改变一个在集合中已经存在的文档或文档数组.默认的,update()方法更新一个独立的文档.如果mu ...