【题解】CQOI2007余数求和
大家都说这题水然而我好像还是调了有一会儿……不过暴力真的很良心,裸的暴力竟然还有60分。
打一张表出来,就会发现数据好像哪里有规律的样子,再仔细看一看,就会发现k/3~k/2为公差为2的等差数列,k/2~之后为公差为1的等差数列,于是我们就可以利用高斯求和快速求解啦。自认为代码是能够看得的...
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define int long long
LL ans;
int p, x = , n, m, k, base, skipper; LL Get_sum()//高斯求和,从p项开始公差为x
{
int y = x - ;
int base = (k % p);
int end = max(base % y, base - (m - p) * y);
skipper = ((base - end) / y) + ;
return ((LL)(base + end) * (LL)skipper) >> ;
} void init()//分段设x值
{
if(k > ) x = ;
else if(k > ) x = ;
else if(k > ) x = ;
else if(k > ) x = ;
else x = ;
} signed main()
{
scanf("%lld%lld", &n, &k);
m = min(n, k);
init();
for(p = ; p <= m; p ++)
{
if(p == (k / x) + )
{
ans += Get_sum();
p += (skipper - );//统计加了多少项
x -= ;
}
else ans += (k % p);
}
if(n > k) ans += (LL) (n - k) * (LL) (k);
printf("%lld", ans);
return ;
}
【题解】CQOI2007余数求和的更多相关文章
- [题解] [CQOI2007] 余数求和
题面 题解 考虑到这个等式\(a\bmod b = a - b * \lfloor\frac{a}{b}\rfloor\) 所以我们可以得到: \[ \begin{aligned} ans & ...
- 题解 P2261【[CQOI2007]余数求和】
P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- [Luogu 2261] CQOI2007 余数求和
[Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
随机推荐
- Java 使用Apache POI读取和写入Excel表格
1,引入所用的包 <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi-ooxm ...
- Asp.Net Core 使用Docker进行容器化部署(二)使用Nginx进行反向代理
上一篇介绍了Asp.Net 程序在Docker中的部署,这篇介绍使用Nginx对Docker的实例进行反向代理 一.修改Nginx配置文件 使用winscp链接Liunx服务器,在/ect/nginx ...
- mybatis报错:查询一对多或多对多时只返回一条数据的问题
问题: 使用映射文件实现查询一对多或多对多时只返回一条数据问题 解决方法: 导致这种情况出现的问题是因为两个表中的主键是一样所以出现了数据覆盖问题. 解决方式一:修改数据库表中的主键(这种方法比较麻烦 ...
- JavaSE 第二次学习随笔(三)
* 常见异常 * 数组越界异常 * 空指针异常 * * * 特点: 当程序出现异常的时候, 程序会打印异常信息并中断程序 * 所以当同时出现多个异常的时候只能执行第一个, 后边的用不到 * * 单异常 ...
- Hadoop(3)-Hadoop介绍
Hadoop三大发行版本 Hadoop三大发行版本:Apache.Cloudera.Hortonworks. Apache版本最原始(最基础)的版本,对于入门学习最好. Cloudera在大型互联网企 ...
- hive 学习系列之七 hive 常用数据清洗函数
1,case when 的利用,清洗诸如评分等的内容,用例如下. case when new.comment_grade = '五星商户' then 50 when new.comment_grade ...
- Python学习手册之控制结构(一)
在上一篇文章中,我们对 Python 进行了简单介绍和介绍了 Python 的基本语法,现在我们继续介绍 Python 控制结构. 查看上一篇文章请点击:https://www.cnblogs.com ...
- ctf题目writeup(5)
2019.2.1 今天继续bugku的隐写杂项题:题目链接:https://ctf.bugku.com/challenges 1. 这道题下载后用wireshark打开...看了好久也没看出个所以然, ...
- 如何保证HashMap线程安全
可使用Java 1.5推荐的java.util.concurrent包ConcurrentHashMap来实现,内部不再使用类似HashTable的synchronized同步锁,而是使用Reentr ...
- ORA-12705: Cannot access NLS data files or invalid
RedHat7.1 Oracle11gr2 oracle 默认的编码方式如下:SQL> select userenv('language') from dual; USERENV('LANGUA ...