Reviewing notes 1.1 of Analytic geometry
Chapter 1 Vector Algebra
♦ Vector Space
Vector and vector space
A vector is described as a quantity that has both direction and length. A vector space is a collection of these geometic objects that can be added together and multiplied by numbers.
What we mainly focus on is the vector space over the real number field,which is a nonempty set V together with two operations called addition and scalar multiplication.The sum u+v of two elements u,v∈V is also an element of V,and the scalar multiple cu of u∈V by the real number c is an element of V. These operations are required to satisfy the axioms followed.
Axiom
Let V be a vector space over the real number field:
(a)Addition is associative and commutative.
(b)There is a zero element θ such that u+θ=u for every u∈V.
(c)The distribution laws hold:
(c+d)u=cu+du,c(u+v)=cu+cv;
for every real numbers c,d and u,v∈V.
(d)(cd)u=c(du) for every real c,d,and u∈V.
(e)0u=θ,1u=u,for every u∈V.
Example
(a) In a vector space the additive inverse −u is often called the opposite vector of u; it has the same magnitude as the original and opposite direction and we have u+(-u)=θ and -(-u)=u.A unit vector in a normed vector space is a vector of length 1.The normalized vector û of a non-zero vector u is the unit vector in the direction of u.
(b) In Euclidean space, two vectors are orthogonal if and only if their scalar product is zero, or one of the vectors is zero. It is an extension of the concept of perpendicular vectors to spaces of any dimension.
Definition
A subset B of a vector space V is called a linearly dependent set if there exist distinct elements u1,u2...,um∈B And real numbers c1,c2...cm not all 0,such that c1u1 +c2u2 +...+cmum=θ.If B is not linearly dependent,then it is an linearly independent set.V is a finite dimensional vector space if some finite subset B of V spans V,namely every element u∈V is a linear combination u=c1u1+c2u2+...+cmum where u1,u2...,um∈B. If u1,u2...,um are linearly independent,then the combination is unique ,and we call the linearly independent set {u1,u2...,um} that spans V a basis for V.
Proposition
Vectors α,β,γ are coplanar if and only if there exist three real numbers λ,μ,ν such that λα+μβ+νγ=θ.
Reviewing notes 1.1 of Analytic geometry的更多相关文章
- 【Math for ML】解析几何(Analytic Geometry)
I. 范数(Norm) 定义: 向量空间\(V\)上的范数(norm)是如下函数: \[ \begin{align} \|·\|:V→R, \notag \\ x→\|x\| \notag \end{ ...
- Reviewing notes 1.1 of Advanced algebra
♦Linear map Definition Linear map A linear map from vector space V to W over a field F is a function ...
- Reviewing notes 2.1 of Mathematical analysis
Chapter2 Numerical sequence and function Cartesian product set If S and T are sets,then the cartesia ...
- PDF分享:国外优秀数学教材选评
<国外优秀数学教材选评>推荐书目下载 具体内容请查看原内容: http://www.library.fudan.edu.cn/wjzx/list/373-1-20.htm 或者http:/ ...
- 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书
1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...
- NI Vision for LabVIEW 基础(一):NI Vision 简介
NI Vision 控件模板 Vision控件模板位于LabVIEW控件模板的最顶层,由一下元素组成: IMAQ Image.ctl—该控件是一个类型定义,用于声明图象类型的数据.在VI的前面板中使用 ...
- 特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换
总结: 1.线性变换运算封闭,加法和乘法 2.特征向量经过线性变换后方向不变 https://en.wikipedia.org/wiki/Linear_map Examples of linear t ...
- MIT课程
8.02 Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...
- <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes
<Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...
随机推荐
- leetcode392
public class Solution { public bool IsSubsequence(string s, string t) { ; ; while (i < s.Length & ...
- 浅谈块元素绝对定位的margin属性
对于div的绝对定位一直以为margin属性是无效的,只是通过top,left,bottom,right定位,然而今天的却发现不是这样的,于是对其做了些实验: 使用的HTML原始测试文件: <! ...
- 【更多教程关注公众号全要买】1-2 Disruptor与BlockingQueue压力测试性能对比
JDK所提供的BlockingQueue替换成Dis
- SaeStorage使用示例
新浪SAE官方地址:http://apidoc.sinaapp.com/sae/SaeStorage.html SaeStorage的代码详细:http://apidoc.sinaapp.com/__ ...
- mybatis 框架 的简单使用
# Global logging configuration #在开发环境下日志级别要设置成DEBUG,生产环境设置成info或error log4j.rootLogger=DEBUG, stdout ...
- 多线程编程为什么要sleep
以前在分析程序的时候就遇到很多sleep,当时很觉得很奇怪?不直到为什么要调用这个sleep,现在明白了,这种情况一般是应用程序有多个线程,那怎么手动切换线程呢?调用sleep即可.
- 获取HTML元素位置--js学习笔记
对于不同的元素,不同的浏览器,offsetParent含义不同,有时,指的是直接包含的元素,有时指的是HTML元素,有时不存在offsetParent. 如果所研究的元素没有offsetParent, ...
- Part3_lesson4---协处理器访问指令
1.什么是协处理器? CP15是协处理器, CP15的作用:系统控制协处理器CP15,它提供了额外的寄存器,这些寄存器用于配置和控制cache,MMU,保护系统,时钟模式,和其他的系统项,比如大小端操 ...
- Java String对象面试题分析
- MySQL性能调优与架构设计——第7章 MySQL数据库锁定机制
第7章 MySQL数据库锁定机制 前言: 为了保证数据的一致完整性,任何一个数据库都存在锁定机制.锁定机制的优劣直接应想到一个数据库系统的并发处理能力和性能,所以锁定机制的实现也就成为了各种数据库的核 ...