Chapter 1 Vector Algebra


♦ Vector Space

Vector and vector space

A vector is described as a quantity that has both direction and length.  A vector space is a collection of these geometic objects that can be added together and multiplied by numbers.

What we mainly focus on is the vector space over the real number field,which is a nonempty set V together with two operations called addition and scalar multiplication.The sum u+v of two elements u,v∈V is also an element of V,and the scalar multiple cu of u∈V by the real number c is an element of V. These operations are required to satisfy the axioms followed.

Axiom

Let V be a vector space over the real number field:

(a)Addition is associative and commutative.

(b)There is a zero element θ such that u+θ=u for every u∈V.

(c)The distribution laws hold:

(c+d)u=cu+du,c(u+v)=cu+cv;

for every real numbers c,d and u,v∈V.

(d)(cd)u=c(du) for every real c,d,and u∈V.

(e)0u=θ,1u=u,for every u∈V.

Example

(a) In a vector space the additive inverse −u is often called the opposite vector of u; it has the same magnitude as the original and opposite direction and we have u+(-u)=θ and -(-u)=u.A unit vector in a normed vector space is a vector of length 1.The normalized vector û of a non-zero vector u is the unit vector in the direction of u.

(b) In Euclidean space, two vectors are orthogonal if and only if their scalar product is zero, or one of the vectors is zero. It is an extension of the concept of perpendicular vectors to spaces of any dimension.

Definition

A subset B of a vector space V is called a linearly dependent set if there exist distinct elements u1,u2...,um∈B And real numbers c1,c2...cm not all 0,such that c1u1 +c2u2 +...+cmum=θ.If B is not linearly dependent,then it is an linearly independent set.V is a finite dimensional vector space if some finite subset B of V spans V,namely every element u∈V is a linear combination u=c1u1+c2u2+...+cmum where u1,u2...,um∈B. If u1,u2...,um are linearly independent,then the combination is unique ,and we call the linearly independent set {u1,u2...,um} that spans V a basis for V.

Proposition

Vectors α,β,γ are coplanar if and only if there exist three real numbers λ,μ,ν such that λα+μβ+νγ=θ.


Reviewing notes 1.1 of Analytic geometry的更多相关文章

  1. 【Math for ML】解析几何(Analytic Geometry)

    I. 范数(Norm) 定义: 向量空间\(V\)上的范数(norm)是如下函数: \[ \begin{align} \|·\|:V→R, \notag \\ x→\|x\| \notag \end{ ...

  2. Reviewing notes 1.1 of Advanced algebra

    ♦Linear map Definition Linear map A linear map from vector space V to W over a field F is a function ...

  3. Reviewing notes 2.1 of Mathematical analysis

    Chapter2 Numerical sequence and function Cartesian product set If S and T are sets,then the cartesia ...

  4. PDF分享:国外优秀数学教材选评

    <国外优秀数学教材选评>推荐书目下载 具体内容请查看原内容: http://www.library.fudan.edu.cn/wjzx/list/373-1-20.htm 或者http:/ ...

  5. 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书

    1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...

  6. NI Vision for LabVIEW 基础(一):NI Vision 简介

    NI Vision 控件模板 Vision控件模板位于LabVIEW控件模板的最顶层,由一下元素组成: IMAQ Image.ctl—该控件是一个类型定义,用于声明图象类型的数据.在VI的前面板中使用 ...

  7. 特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换

    总结: 1.线性变换运算封闭,加法和乘法 2.特征向量经过线性变换后方向不变 https://en.wikipedia.org/wiki/Linear_map Examples of linear t ...

  8. MIT课程

    8.02  Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...

  9. <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

随机推荐

  1. 上传图片用图片文件的对象hash哈希值判断图片是否一样,避免重复提交相同的图片到服务器中

    上传图片用图片文件的对象hash哈希值判断图片是否一样,避免重复提交相同的图片到服务器中 前端:要用到一个插件,点击下载 <!DOCTYPE html> <html xmlns=&q ...

  2. 19-EasyNetQ:用EasyNetQ.Hosepipe重新提交错误信息

    EasyNetQ.Hosepipe是EasyNetQ队列管理工具.用来取回队列中的消息并重新发布这些消息.还可以用它来检测错误队列,并重试发布消息. 用法 EasyNetQ.Hosepipe.exe ...

  3. Hibernate中的一些注解的学习

    1.@Column注解 就像@Table注解用来标识实体类与数据表的对应关系类似,@Column注解来标识实体类中属性与数据表中字段的对应关系. @Column注解一共有10个属性,这10个属性均为可 ...

  4. java基础之JDBC一:概述及步骤详解

    1. JDBC的简介 概述: 就是Java用来操作不同数据库(DBMS)的类库(技术), 本质就是一些类和接口. /* 类: DriverManager 接口: Driver, Connection, ...

  5. Log4Net 在ASP.NET WebForm 和 MVC的全局配置

    使用log4net可以很方便地为应用添加日志功能.应用Log4net,开发者可以很精确地控制日志信息的输出,减少了多余信息,提高了日志记录性能.同时,通过外部配置文件,用户可以不用重新编译程序就能改变 ...

  6. Java两大测试方法Junit和TestNG的比较

    开发过程中,经常会用到JAVA测试,前端javas cript的调试相对比较轻松,firebug,console.log()等,但是java的就比较纠结点,每次改完都要去编译再运行,过程相对缓慢,加上 ...

  7. 在ubuntu12.04上安装6款顶级漂亮的BURG主题

    BURG 基本上是一个基于GRUB的Linux引导装载程序.BURG格有一个高度可配置的菜单系统,可选择文本和图形模式.简而言之,BURG可广泛定制,有良好免费的BURG主题.选择自己最喜欢的,下面我 ...

  8. 一段上传图片预览JS脚本,Input file图片预览的实现

    在深圳做项目的时候,需要一个用户上传头像预览的功能!是在网上找了好多,都不太满意.要么是flash的,要么是Ajax上传后返回图片路径的,要么压根就是不能用的.幸运的是在这个项目以前有人写过一个图片预 ...

  9. 566. Reshape the Matrix矩阵重排

    [抄题]: In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a ...

  10. 10-python中的requests应用

    使用request方便: #_*_ coding: utf-8 _*_ ''' Created on 2018年7月14日 @author: sss ''' import requests impor ...