hdu2587(递推)
目前做过的最纠结的一道递推题。
情况比较多,比较复杂。。。
这题最主要的还是要推出当m=2 时和m>2时,用什么方法最优。
给个数据
n=3,m=2 需要48
n=3,m=3 需要81
如果在纸上把这两种情况推出来,这题就容易找到递推。
m=1,就是最基础的汉诺塔递推了。
很O_O的汉诺塔
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 561 Accepted Submission(s): 67
2 4
28
//
// main.cpp
// hdu2587
//
// Created by 陈加寿 on 16/3/17.
// Copyright © 2016年 chenhuan001. All rights reserved.
// #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 1100
#define MOD 20090308 long long dp[N][]; //来一个统计,每个小块被搬多少次
long long save[N][N][];
long long m;
int tn;
int g[N]; long long dfs(int n,int flag)
{
if(dp[n][flag]!=-) return dp[n][flag];
if(flag == )
{
dp[n][flag] = (*dfs(n-,)+*m+dfs(n-,))%MOD;
save[n][n][flag]=;
if(n== tn)
{
for(int i=;i<=n-;i++)
{
save[n][i][flag]+=save[n-][i][]+save[n-][i][];
save[n][i][flag]%=;
}
}
else
{
for(int i=;i<=n-;i++)
{
save[n][i][flag]+=*save[n-][i][]+save[n-][i][];
save[n][i][flag]%=;
}
}
}
else
{
dp[n][flag] = (*dfs(n-,)+m)%MOD;
save[n][n][flag] = ;
for(int i=;i<=n-;i++)
{
save[n][i][flag] += *save[n-][i][];
save[n][i][flag]%=;
}
}
return dp[n][flag];
} int main() {
int n;
while(cin>>n>>m)
{
tn = n;
//来测试一种方法。!
memset(save,,sizeof(save));
memset(g,,sizeof(g));
memset(dp,-,sizeof(dp));
dp[][] = m;
save[][][] = ;
dp[][] = *m;
save[][][] = ;
dfs(n,);
//对于n
if(m>)
{
if(n<=)
{
cout<<dp[n][]<<endl;
}
else
{
cout<<(dp[n][]+*(dp[n-][]+dp[n-][]))%MOD<<endl;//进行一次调整。
}
}
else if(m==)
{
//m == 2时
if(n<=)
{
cout<<dp[n][]<<endl;
}
else
{
//int cnt=1;
//cout<<(dp[n][1]+2*(dp[n-2][1]+dp[n-2][0])-3*m*(n-2) )%MOD<<endl;//进行一次调整。
//各种不对。
long long tans=;
for(int i=n;i>;i--)
{
//把第i个块,从A放入C中
//第一步判断是否需要调整
if(g[i] == )
{
tans = (tans + dp[i-][] + dp[i-][])%MOD;//调整
for(int j=;j<i;j++)
{
g[j] += save[i-][j][]+save[i-][j][];
g[j]%=;
}
}
tans = (tans + dp[i-][] + dp[i-][]+*m)%MOD;
for(int j=;j<i;j++)
{
g[j] += save[i-][j][]+save[i-][j][];
g[j]%=;
}
}
cout<<(tans+)%MOD<<endl;//这样既然是对的,那么上面也是对的
}
}
else// m == 1
{
cout<<dp[n][]<<endl;
}
// for(int i=1;i<=n-2;i++)
// save[n][i][1] += 2*save[n-2][i][0]+2*save[n-2][i][1];
//
// for(int i=1;i<=n;i++)
// cout<<i<<" "<<save[n][i][1]<<endl;
}
return ;
}
hdu2587(递推)的更多相关文章
- 【BZOJ-2476】战场的数目 矩阵乘法 + 递推
2476: 战场的数目 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 58 Solved: 38[Submit][Status][Discuss] D ...
- 从一道NOI练习题说递推和递归
一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...
- Flags-Ural1225简单递推
Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- 简单递推 HDU-2108
要成为一个ACMer,就是要不断学习,不断刷题...最近写了一些递推,发现递推规律还是挺明显的,最简单的斐波那契函数(爬楼梯问题),这个大家应该都会,看一点稍微进阶了一点的,不是简单的v[i] = v ...
- [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索
1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- openjudge1768 最大子矩阵[二维前缀和or递推|DP]
总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的 ...
随机推荐
- Unity导出webPlayer并且部署到IIS
http://blog.csdn.net/zooen2011/article/details/12884811 做好的Unity3D项目工程导出webPlayer类型,本地可以直接打开导出的html文 ...
- servlet--百度百科
Servlet(Server Applet),全称Java Servlet, 未有中文译文.是用Java编写的服务器端程序.其主要功能在于交互式地浏览和修改数据,生成动态Web内容.狭义的Servle ...
- ActiveMQ介绍和ActiveMQ入门实例
ActiveMQ百度百科 ActiveMQ入门实例-cnblogs.com 作者用的是5.5的版本,我测试时用的是5.6,按照作者说的整了一下,走得通
- sublime test3 安装及配置
操作系统: Ubuntu16.04 注: 除下载及安装外,其他配置不限操作系统 1. 下载及安装 官网:https://www.sublimetext.com/ 进入官网 点击 INSTALL FOR ...
- C++语言基础(8)-引用
(重要)使用引用的一些注意点: 1.引用不能绑定临时数据,也不能绑定任何无法获取内存地址的常量,表达式,或值,常引用除外. 第一种写法:(错误) int func_int(){ ; return n; ...
- gcc -M -MM -MQ -MF -MT -MD
静态模式规则对一个较大工程的管理非常有用.它可以对整个工程的同一类文件的重建规则进行一次定义,而实现对整个工程中此类文件指定相同的重建规则.比如,可以用来描述整个工程中所有的.o 文件的依赖规则和编译 ...
- Chrome插件之一键保存网页为PDF1.1发布
最新版本:V1.1 下载地址:http://download.csdn.net/detail/bdstjk/5722317 http://pan.baidu.com/share/link?sharei ...
- IOS开发之ZBarReaderView的使用
IOS开发之ZBarReaderView的使用 HOMEABOUTGUESTBOOKCATEGORIESTAGSLINKSSUBSCRIBE 当开发IOS程序中需要用到二维码识别功能的时候,zbar这 ...
- 使用httpClient发送get\post请求
maven依赖 <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId&g ...
- C/C++知识要点4——printf函数以及cout的计算顺序
printf函数的计算顺序:先从右到左压栈,然后从左到右出栈. 例程: #include"stdio.h" int main() { int arr[] = { 1, 2, 3, ...