【BZOJ2045】双亲数

Description

小D是一名数学爱好者,他对数字的着迷到了疯狂的程度。 我们以d = gcd(a, b)表示a、b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描述,此时,我们称有序数对(a, b)为d的双亲数。 与正常双亲不太相同的是,对于同一个d,他的双亲太多了 >_< 比如,(4, 6), (6, 4), (2, 100)都是2的双亲数。 于是一个这样的问题摆在眼前,对于0 < a <= A, 0 < b <= B,有多少有序数对(a, b)是d的双亲数?

Input

输入文件只有一行,三个正整数A、B、d (d <= A, B),意义如题所示。

Output

输出一行一个整数,给出满足条件的双亲数的个数。

Sample Input

5 5 2

Sample Output

3
【样例解释】

满足条件的三对双亲数为(2, 2) (2, 4) (4, 2)

HINT

对于100%的数据满足0 < A, B < 10^ 6

题解

总之就是一旦看到[...=1]就往反演上想就好了

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1000010;
int n,m,d,num;
int pri[maxn],mu[maxn],sm[maxn];
bool np[maxn];
typedef long long ll;
ll ans;
int main()
{
scanf("%d%d%d",&n,&m,&d),n/=d,m/=d;
if(n<m) swap(n,m);
int i,j,last;
sm[1]=mu[1]=1;
for(i=2;i<=n;i++)
{
if(!np[i]) pri[++num]=i,mu[i]=-1;
sm[i]=sm[i-1]+mu[i];
for(j=1;j<=num&&i*pri[j]<=n;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(i=1;i<=m;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans+=1ll*(sm[last]-sm[i-1])*(n/i)*(m/i);
}
printf("%lld",ans);
return 0;
}

【BZOJ2045】双亲数 莫比乌斯反演的更多相关文章

  1. JZYZOJ 1375 双亲数 莫比乌斯反演

    http://172.20.6.3/Problem_Show.asp?id=1375 网上搜推理图. 有一段没有写莫比乌斯反演都快忘了..数学能力--,定理完全不会推,但是这道题整体来说应该是比较好写 ...

  2. [P4450] 双亲数 - 莫比乌斯反演,整除分块

    模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...

  3. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  4. [BZOJ2045]双亲数(莫比乌斯反演)

    双亲数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 959  Solved: 455[Submit][Status][Discuss] Descri ...

  5. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  6. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  7. BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)

    手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...

  8. luogu 4844 LJJ爱数数 (莫比乌斯反演+数学推导)

    题目大意:求满足gcd(a,b,c)==1,1/a+1/b=1/c,a,b,c<=n的{a,b,c}有序三元组个数 因为题目里有LJJ我才做的这道题 出题人官方题解https://www.cnb ...

  9. BZOJ2045: 双亲数

    2045: 双亲数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 602  Solved: 275[Submit][Status] Descripti ...

随机推荐

  1. 解决安装Ubuntu之后找不到无线网卡驱动的问题

    为了不浇灭大家尝试ubuntu的冲动,昨天我安装了ubuntu 14.04 LTS版本号,从安装到又一次开机都非常顺利.PS:不会安装的请找教程区把,网上非常多,CSDN论坛都有. 安装之后当你奇妙的 ...

  2. iOS开发-发送邮件(E-mail)方法整理合集(共3种)

    前言:在IOS开发中,有时候我们会需要用到邮件发送的功能.比如,接收用户反馈和程序崩溃通知等等.其实这个功能是很常用的,因为我目前就有发送邮件的开发需求,所以顺便整理下IOS发送邮件的方法. IOS原 ...

  3. U盘安装

    首先插入已经制作为启动盘的U盘,然后开机长按ESC,出现如下界面: 选择KingstonDataTraveler 3.0 按enter键进入,进入加载界面,之后出现如下界面: 这是在已经下载好系统之后 ...

  4. event.returnvalue = false的使用

    event.returnvalue false代表不接收事件返回值 <script language="JavaScript"> //Ctrl+s保存 document ...

  5. [UIDevice currentDevice].model

    iPhone Simulator iPad Simulator iPod touch iPad iPhone  

  6. TensorFlow学习笔记 速记1——tf.nn.dropout

    tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None,name=None)  上面方法中常用的是前两个参数: 第一个参数 x:指输入: 第二个 ...

  7. CentOS7中关闭selinux

    在安装Cobbler和Puppet时需要关闭selinux,但是通常情况下载安装完CentOS7后,默认情况下SElinux是启用状态, 如下所示: [csharp] view plaincopy   ...

  8. php常见的类库-文件操作类

    工作中经常用php操作文件,因此把常用文件操作整理出来: class hylaz_file{ /** * Read file * @param string $pathname * @return s ...

  9. 辛星跟您玩转vim第二节之用vim命令移动光标

    首先值得一提的是,我的vim教程pdf版本号已经写完了,大家能够去下载.这里是csdn的下载地址:csdn下载.假设左边的下载地址挂掉了,也能够自行在浏览器以下输入例如以下地址进行下载:http:// ...

  10. Unity插件之NGUI学习(4)—— 创建UI2DSprite动画

    创建一个新的Scene.并按 Unity插件之NGUI学习(2)创建UI Root,并在UI Root的Camera下创建一个Panel. 然后在选中Panel,在菜单中选择NGUI->Crea ...