厚颜无耻的发一篇可能是全网最劣解法

我们发现要求给定的串所有不同的循环同构出现的次数,可以直接暴力啊

因为一个长度为\(n\)的串,不同的循环同构次数显然是不会超过\(n\)的,所以我们可以直接对每一个循环通过分别求一下其出现次数

求其出现次数当然可以交给\(SAM\)来搞了

于是我们把所有的串都插入\(SAM\)里去,但是我们只计算\(S\)串产生的贡献,对于每一个\(T\)串我们要将其倍长之后再插入,这样我们就可以在\(parent\)树上直接树上倍增求出一个循环同构出现次数了

同时为了去重,我们每次跳出来一个循环同构之后给它打上标记,之后就不要再跳了

这样的做法当让是喜提\(MLE\)

于是我们甚至可以直接那\(map\)来存边,之后不用树上倍增直接暴力往上跳,于是就能以全luogu最慢的好成绩通过这道题

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<vector>
#define maxn 6000005
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
std::map<int,int> son[maxn];
struct E{int v,nxt;}e[maxn];
int n,lst=1,cnt=1,num,m;
int len[maxn],head[maxn],sz[maxn],deep[maxn],vis[maxn],fa[maxn];
inline void add(int x,int y) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;}
void dfs(int x) {for(re int i=head[x];i;i=e[i].nxt) deep[e[i].v]=deep[x]+1,dfs(e[i].v),sz[x]+=sz[e[i].v];}
int st[1000005],top;
std::vector<int> a[100005];
int L[100005];
char S[1000005];
inline void ins(int c,int o,int t)
{
int f=lst,p=++cnt; lst=p;
len[p]=len[f]+1; if(!o) sz[p]=1;
if(o&&t) a[o].push_back(p);
while(f&&!son[f][c]) son[f][c]=p,f=fa[f];
if(!f) {fa[p]=1;return;}
int x=son[f][c];
if(len[f]+1==len[x]) {fa[p]=x;return;}
int y=++cnt;
len[y]=len[f]+1,fa[y]=fa[x],fa[x]=fa[p]=y;
for(std::map<int,int>::iterator it=son[x].begin();it!=son[x].end();it++) son[y].insert(*it);
while(f&&son[f][c]==x) son[f][c]=y,f=fa[f];
}
inline int find(int x,int li) {while(len[fa[x]]>=li) x=fa[x];return x;}
int main()
{
scanf("%s",S+1),n=strlen(S+1);scanf("%d",&m);
for(re int i=1;i<=n;i++) ins(S[i]-'a',0,0);
for(re int i=1;i<=m;i++)
{
scanf("%s",S+1);L[i]=strlen(S+1);lst=1;
for(re int j=1;j<L[i];j++) ins(S[j]-'a',i,0);ins(S[L[i]]-'a',i,1);
for(re int j=1;j<L[i];j++) ins(S[j]-'a',i,1);
}
for(re int i=2;i<=cnt;i++) add(fa[i],i);deep[1]=1;dfs(1);
for(re int i=1;i<=m;i++)
{
int ans=0;top=0;
for(re int j=0;j<a[i].size();j++)
{
int t=find(a[i][j],L[i]);
if(vis[t]) continue;
st[++top]=t;ans+=sz[t];vis[t]=1;
}
printf("%d\n",ans);
for(re int j=1;j<=top;j++) vis[st[j]]=0;
}
return 0;
}

CF235C 【Cyclical Quest】的更多相关文章

  1. 【CF235C】Cyclical Quest(后缀自动机)

    [CF235C]Cyclical Quest(后缀自动机) 题面 洛谷 题解 大致翻译: 给定一个串 然后若干组询问 每次也给定一个串 这个串可以旋转(就是把最后一位丢到最前面这样子) 问这个串以及其 ...

  2. 【Codeforces235C】Cyclical Quest 后缀自动机

    C. Cyclical Quest time limit per test:3 seconds memory limit per test:512 megabytes input:standard i ...

  3. 【学习笔记】浅析后缀自动机(SAM)及基础应用

    解决子串相关问题的强大工具 我们知道一个长度为 \(n\) 的字符串中所有的子串数目为 \(O(n^2)\) 个,这很大程度上限制了我们对某些子串相关问题的研究.所以有没有解决方案,使得我们可以在可承 ...

  4. 【已转移】【Java架构:基础技术】一篇文章搞掂:Spring

    本文篇幅较长,建议合理利用右上角目录进行查看(如果没有目录请刷新). 本文是对<SPRING实战第4版>的总结,大家也可以去仔细研读该书 [------------------------ ...

  5. 【AR实验室】mulberryAR : ORBSLAM2+VVSION

    本文转载请注明出处 —— polobymulberry-博客园 0x00 - 前言 mulberryAR是我业余时间弄的一个AR引擎,目前主要支持单目视觉SLAM+3D渲染,并且支持iOS端,但是该引 ...

  6. 【.net 深呼吸】细说CodeDom(1):结构大观

    CodeDom 是啥东东?Html Dom听过吧,XML Dom听过吧.DOM一般可翻译为 文档对象模型,那 Code + DOM呢,自然是指代码文档模型了.如果你从来没接触过 CodeDom,你大概 ...

  7. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  8. 【前端性能】高性能滚动 scroll 及页面渲染优化

    最近在研究页面渲染及web动画的性能问题,以及拜读<CSS SECRET>(CSS揭秘)这本大作. 本文主要想谈谈页面优化之滚动优化. 主要内容包括了为何需要优化滚动事件,滚动与页面渲染的 ...

  9. 【深入浅出jQuery】源码浅析--整体架构

    最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...

随机推荐

  1. Echart 动态生成series数据

    要做成页面只传入数据,js生成图表,如下图 下面是js代码 var LineChart = function (ID, title, axisData,seriesData) { var myChar ...

  2. (转)8个有力的Awk内建变量

    8个有力的Awk内建变量 翻译原文:8 Powerful Awk Built-in Variableshttp://www.thegeekstuff.com/这个博客真是不错. 这篇文章是Awk Tu ...

  3. codeigniter读取数据库的公共配置并全局缓存的实现方案

    引言 学习CodeIgniter大概有几天了.从第一天了解后,对CI情有独钟,比较符合我的风格.其实一直以来对框架这块不太敏感.自己长时间的开发,也有一套自己的开发风格和习惯.但是这年头,你说你不会框 ...

  4. bzoj 4574: [Zjoi2016]线段树

    Description 小Yuuka遇到了一个题目:有一个序列a_1,a_2,?,a_n,q次操作,每次把一个区间内的数改成区间内的最大值,问 最后每个数是多少.小Yuuka很快地就使用了线段树解决了 ...

  5. ssm(spring、springmvc、mybatis)框架整合

    第一次接触这3大框架,打算一个一个慢慢学,参照网上资料搭建了一个ssm项目,作为新手吃亏在jar包的导入上,比如jdbc DataSource配置的时候由于导入的jar包不兼容或者缺包导致项目无法正常 ...

  6. spring+springmvc+hibernate整合遇到的问题

    spring+springmvc+hibernate整合遇到的问题2016年10月20日 23:24:03 守望dfdfdf 阅读数:702 标签: ssh学习经历的异常exception异常框架更多 ...

  7. Spring课程 Spring入门篇 4-9 Spring bean装配之对jsr支持的说明

    1 解析 1.1 疑问:2.2去掉@resource注解,为什么不能赋值?不是有set方法了吗? 1.2 @resource注解版本支持 1.3 没有显式指定@resource的那么,默认名称从何获得 ...

  8. configparser模块——配置文档

    configparser模块用于生成和修改常见配置文档. 预制配置文件:conf.ini [DEFAULT] ServerAliveInterval = 45 Compression = yes Co ...

  9. Disruptor之粗糙认识

    一 概述 1.Disruptor Disruptor是一个高性能的异步处理框架,一个“生产者-消费者”模型. 2.RingBuffer RingBuffer是一种环形数据结构,包含一个指向下一个槽点的 ...

  10. angular2-动画

    使用动画: import { Component, Input } from '@angular/core'; import { trigger, state, style, animate, tra ...