题目:http://acm.hdu.edu.cn/showproblem.php?pid=1028

就是可以用任意个1、2、3、...,所以式子写出来就是这样:(1+x+x^2+...)(1+x^2+x^4+...)(1+x^3+x^6+...)...(1+x^n+x^(2*n)+...)... 因为求 x^n 系数,所以再往后的式子就没有贡献了,求到第 n 个式子即可。

一个x^2就像一条边一样,可以让第 k 项的系数转移给第 k+2 项。按这个思路写代码就行了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int n,a[N],b[N];
int main()
{
while(scanf("%d",&n)==)
{
for(int i=;i<=n;i++)
a[i]=,b[i]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
for(int k=;j+k<=n;k+=i)
b[j+k]+=a[j];
for(int j=;j<=n;j++)
a[j]=b[j],b[j]=;
}
printf("%d\n",a[n]);
}
return ;
}

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1398

同上。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=;
int n,a[N],b[N],w[M+];
int main()
{
for(int i=;i<=M;i++)w[i]=i*i;
while()
{
scanf("%d",&n);if(!n)return ;
for(int i=;i<=n;i++)
a[i]=,b[i]=;
for(int i=;i<=M;i++)
{
for(int j=;j<=n;j++)
for(int k=;j+k<=n;k+=w[i])
b[j+k]+=a[j];
for(int j=;j<=n;j++)
a[j]=b[j],b[j]=;
}
printf("%d\n",a[n]);
}
}

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1085

感觉不从生成函数的角度看也可以很简单。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int n1,n2,n3;
bool a[N];
int main()
{
while()
{
scanf("%d%d%d",&n1,&n2,&n3);
if(!n1&&!n2&&!n3)return ;
int lm=n1+(n2<<)+n3*;
for(int i=lm+;i>n1;i--)a[i]=;//lm+1
for(int i=;i<=n1;i++)a[i]=;
for(int i=n1+(n2<<);i>n1;i--)
{
if(a[i])continue;
for(int j=min(n2<<,i-(i&));j>;j-=)
if(a[i-j]) {a[i]=;break;}
}
for(int i=lm;i>n1;i--)
{
if(a[i])continue;
for(int j=min(n3*,i/*);j>;j-=)
if(a[i-j]) {a[i]=;break;}
}
for(int i=n1+;i<=lm+;i++)
if(!a[i]){printf("%d\n",i);break;}
}
}

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1171

其实我就是写了一个很暴力的多重背包?

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=N*N*;
int n,v[N],c[N];
bool a[M];
int main()
{
a[]=;
while()
{
scanf("%d",&n);if(n<)return ;
int sm=;
for(int i=;i<=n;i++)
scanf("%d%d",&v[i],&c[i]),sm+=v[i]*c[i];
for(int i=;i<=sm;i++)a[i]=;
sm=;
for(int i=;i<=n;i++)
{
sm+=v[i]*c[i];
for(int j=sm;j>;j--)
{
if(a[j])continue;
for(int k=;k<=c[i];k++)
{
if(k*v[i]>j)break;
if(a[j-k*v[i]]){a[j]=;break;}
}
}
}
int d=sm>>;
for(int i=d;i>=;i--)
if(a[i]){printf("%d %d\n",sm-i,i);break;}
}
}

hdu 1028 && hdu 1398 && hdu 1085 && hdu 1171 ——生成函数的更多相关文章

  1. hdu 1028 Ignatius and the Princess III【生成函数】

    老是想着化简,实际上O(n^3)就行了-- 写成生成函数是\( \prod_{i=1}^{n}(1+x^i+2^{2i}+...+x^{ \left \lfloor \frac{n}{i} \righ ...

  2. ACM: HDU 1028 Ignatius and the Princess III-DP

     HDU 1028 Ignatius and the Princess III Time Limit:1000MS     Memory Limit:32768KB     64bit IO Form ...

  3. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  4. HDU 1028 Ignatius and the Princess III (递归,dp)

    以下引用部分全都来自:http://blog.csdn.net/ice_crazy/article/details/7478802  Ice—Crazy的专栏 分析: HDU 1028 摘: 本题的意 ...

  5. hdu 1028 母函数 一个数有几种相加方式

    ///hdu 1028 母函数 一个数有几种相加方式 #include<stdio.h> #include<string.h> #include<iostream> ...

  6. Ignatius and the Princess III HDU - 1028 -生成函数or完全背包计数

    HDU - 1028 step 1:初始化第一个多项式 也就是 由 1的各种方案 组 成 的多项式 初始化系数为 1.临时区 temp初始化 为 0 step 2:遍历后续的n - 1 个 多项式 , ...

  7. Ignatius and the Princess III HDU - 1028 || 整数拆分,母函数

    Ignatius and the Princess III HDU - 1028 整数划分问题 假的dp(复杂度不对) #include<cstdio> #include<cstri ...

  8. HDU 1028 Ignatius and the Princess III (生成函数/母函数)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  9. HDU 1028 Ignatius and the Princess III (动态规划)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  10. 母函数 <普通母函数(HDU - 1028 ) && 指数型母函数(hdu1521)>

    给出我初学时看的文章:母函数(对于初学者的最容易理解的) 普通母函数--------->HDU - 1028 例题:若有1克.2克.3克.4克的砝码各一 枚,能称出哪几种重量?各有几种可能方案? ...

随机推荐

  1. Linux脚本程序包及安装

    概述 脚本程序并不多见,所以在软件包分类中并没有把它列为一类.它更加类似于 Windows 下的程序安装,有一个可执行的安装程序,只要运行安装程序,然后进行简单的功能定制选择(比如指定安装目录等),就 ...

  2. 使用git从本地上传至git码云远程仓库

    从 http://git-scm.com/download  下载window版的客户端.下载好,一步一步安装即可. 使用前的基本设置 git  config --global user.name & ...

  3. 配置树莓派3和局域网NTP服务器实现内网时间校准

    一.配置局域网NTP服务器 1.安装ntp-4.2.8p5-win32-setup.exe 下载地址:https://www.meinbergglobal.com/english/sw/ntp.htm ...

  4. 【Head First Servlets and JSP】笔记11:cookie

    容器如何知道客户是谁?(这并不是HTTP能实现的!IP地址不能唯一的标识用户,另外,非必要不采用HTTPS 继续mark孤傲苍狼的博客,百科全书 cookie——Header——字典——键值对—— 延 ...

  5. [APIO2013]机器人

    题目描述 VRI(Voltron 机器人学会)的工程师建造了 n 个机器人.任意两个兼容的机 器人站在同一个格子时可以合并为一个复合机器人. 我们把机器人用 1 至 n 编号(n ≤ 9).如果两个机 ...

  6. no xxx find in java.library.path

    JAVA系统运行时候load native lib时候会遇到下面错误,如 java.lang.UnsatisfiedLinkError: no JSTAF in java.library.path这可 ...

  7. 恢复性训练day1

    DP: 0/1背包一个常见的错误是没有cmax(f[i][j],f[i-1][j]) 0/1背包的拓展中有转移式的变形,以及无限数量背包,分组背包等. 可化为背包问题的一般不会太难. 数组开小,出现大 ...

  8. how to use composer in fiddler

    https://www.cnblogs.com/youxin/p/3570310.html http://docs.telerik.com/fiddler/generate-traffic/tasks ...

  9. openssl——初了解

    Openssl OpenSSL是一个开源的.用于SSL/TLS协议的加密工具,是互联网加密传输的核心基础组件,由加拿大的Eric Yang等发起编写的,当前互联网安全传输的大部分场景(如HTTPS)均 ...

  10. BZOJ2764 [JLOI2011]基因补全

    Description 在 生物课中我们学过,碱基组成了DNA(脱氧核糖核酸),他们分别可以用大写字母A,C,T,G表示,其中A总与T配对,C总与G配对.两个碱基序列能相互 匹配,当且仅当它们等长,并 ...