单向队列(deque)

单项队列(先进先出 FIFO )

1、创建单向队列

import queue

q = queue.Queue()

q.put('')
q.put('evescn')

2、查看单向队列

# 单向队列是先进先出,要查看单向队列,需使用get获取单向队列的值

print(q.get())
print(q.get()) 输出结果:
123
evescn

3、单向队列和双向队列的区别

# 双向队列:
调用:import collections
collections.deque() 队列左边右边都可插入/获取数据 # 单向队列:
调用:import queue
queue.Queue 只能右端插入数据,左端获取数据

4、查看单向队列的方法

>>> dir(q)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_get', '_init', '_put', '_qsize', 'all_tasks_done', 'empty', 'full', 'get', 'get_nowait', 'join', 'maxsize', 'mutex', 'not_empty', 'not_full', 'put', 'put_nowait', 'qsize', 'queue', 'task_done', 'unfinished_tasks']
class Queue:
"""Create a queue object with a given maximum size. If maxsize is <= 0, the queue size is infinite.
"""
def __init__(self, maxsize=0):
self.maxsize = maxsize
self._init(maxsize)
# mutex must be held whenever the queue is mutating. All methods
# that acquire mutex must release it before returning. mutex
# is shared between the three conditions, so acquiring and
# releasing the conditions also acquires and releases mutex.
self.mutex = _threading.Lock()
# Notify not_empty whenever an item is added to the queue; a
# thread waiting to get is notified then.
self.not_empty = _threading.Condition(self.mutex)
# Notify not_full whenever an item is removed from the queue;
# a thread waiting to put is notified then.
self.not_full = _threading.Condition(self.mutex)
# Notify all_tasks_done whenever the number of unfinished tasks
# drops to zero; thread waiting to join() is notified to resume
self.all_tasks_done = _threading.Condition(self.mutex)
self.unfinished_tasks = 0 def task_done(self):
"""Indicate that a formerly enqueued task is complete. Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete. If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue). Raises a ValueError if called more times than there were items
placed in the queue.
"""
self.all_tasks_done.acquire()
try:
unfinished = self.unfinished_tasks - 1
if unfinished <= 0:
if unfinished < 0:
raise ValueError('task_done() called too many times')
self.all_tasks_done.notify_all()
self.unfinished_tasks = unfinished
finally:
self.all_tasks_done.release() def join(self):
"""Blocks until all items in the Queue have been gotten and processed. The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks.
"""
self.all_tasks_done.acquire()
try:
while self.unfinished_tasks:
self.all_tasks_done.wait()
finally:
self.all_tasks_done.release() def qsize(self):
"""Return the approximate size of the queue (not reliable!)."""
self.mutex.acquire()
n = self._qsize()
self.mutex.release()
return n def empty(self):
"""Return True if the queue is empty, False otherwise (not reliable!)."""
self.mutex.acquire()
n = not self._qsize()
self.mutex.release()
return n def full(self):
"""Return True if the queue is full, False otherwise (not reliable!)."""
self.mutex.acquire()
n = 0 < self.maxsize == self._qsize()
self.mutex.release()
return n def put(self, item, block=True, timeout=None):
"""Put an item into the queue. If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until a free slot is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Full exception if no free slot was available within that time.
Otherwise ('block' is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception ('timeout'
is ignored in that case).
"""
self.not_full.acquire()
try:
if self.maxsize > 0:
if not block:
if self._qsize() == self.maxsize:
raise Full
elif timeout is None:
while self._qsize() == self.maxsize:
self.not_full.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = _time() + timeout
while self._qsize() == self.maxsize:
remaining = endtime - _time()
if remaining <= 0.0:
raise Full
self.not_full.wait(remaining)
self._put(item)
self.unfinished_tasks += 1
self.not_empty.notify()
finally:
self.not_full.release() def put_nowait(self, item):
"""Put an item into the queue without blocking. Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.
"""
return self.put(item, False) def get(self, block=True, timeout=None):
"""Remove and return an item from the queue. If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until an item is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Empty exception if no item was available within that time.
Otherwise ('block' is false), return an item if one is immediately
available, else raise the Empty exception ('timeout' is ignored
in that case).
"""
self.not_empty.acquire()
try:
if not block:
if not self._qsize():
raise Empty
elif timeout is None:
while not self._qsize():
self.not_empty.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = _time() + timeout
while not self._qsize():
remaining = endtime - _time()
if remaining <= 0.0:
raise Empty
self.not_empty.wait(remaining)
item = self._get()
self.not_full.notify()
return item
finally:
self.not_empty.release() def get_nowait(self):
"""Remove and return an item from the queue without blocking. Only get an item if one is immediately available. Otherwise
raise the Empty exception.
"""
return self.get(False) # Override these methods to implement other queue organizations
# (e.g. stack or priority queue).
# These will only be called with appropriate locks held # Initialize the queue representation
def _init(self, maxsize):
self.queue = deque() def _qsize(self, len=len):
return len(self.queue) # Put a new item in the queue
def _put(self, item):
self.queue.append(item) # Get an item from the queue
def _get(self):
return self.queue.popleft()

Queue.Queue

5、单向队列常用的方法

# put 向队列中放入一个数
# get 取出一个数 import queue q = queue.Queue() q.put('')
q.put('evescn') print(q.get())
print(q.get()) 输出结果: # 先进先出
123
evescn
# qsize 统计当前队列长度

import queue

q = queue.Queue()

q.put('')
q.put('evescn') print(q.qsize() # 输出:2
# empty 队列是否为空

import queue

q = queue.Queue()

print(q.empty()

# 输出:True
# full 队列是否满了,返回True

import queue

q = queue.Queue(1)

print(q.empty())
print(q.full()) q.put('') print(q.full()) # 输出:
True
False
True

Python collections系列之单向队列的更多相关文章

  1. Python collections系列之双向队列

    双向队列(deque) 一个线程安全的双向队列 1.创建一个双向队列 import collections d = collections.deque() d.append(') d.appendle ...

  2. Python collections系列之有序字典

    有序字典(orderedDict ) orderdDict是对字典类型的补充,他记住了字典元素添加的顺序 1.创建一个有序字典 import collections dic = collections ...

  3. Python collections系列之可命名元组

    可命名元组(namedtuple)  根据nametuple可以创建一个包含tuple所有功能以及其他功能的类 1.创建一个坐标类 import collections # 创建类, defaultd ...

  4. Python collections系列之默认字典

    默认字典(defaultdict)  defaultdict是对字典的类型的补充,它默认给字典的值设置了一个类型. 1.创建默认字典 import collections dic = collecti ...

  5. Python collections系列之计数器

    计数器(counter) Counter是对字典(无序)类型的补充,用于追踪值的出现次数. 使用counter需要导入 collections 类 ps:具备字典的所有功能 + 自己的功能 1.创建一 ...

  6. Python 第三篇(下):collections系列、集合(set)、单双队列、深浅copy、内置函数

     一.collections系列: collections其实是python的标准库,也就是python的一个内置模块,因此使用之前导入一下collections模块即可,collections在py ...

  7. python递归、collections系列以及文件操作进阶

    global log 127.0.0.1 local2 daemon maxconn log 127.0.0.1 local2 info defaults log global mode http t ...

  8. python之路(二)-collections系列

    collections提供了一些比较方便的方法,使用时需要先导入模块 导入模块: import collections 1. 计数器Counter 统计参数中出现的次数,以字典的方式返回结果,参数可以 ...

  9. Python之set集合与collections系列

    1>set集合:是一个无序且不重复的元素集合:访问速度快,解决了重复的问题: s2 = set(["che","liu","haha" ...

随机推荐

  1. Linux环境下的图形系统和AMD R600显卡编程(2)——Framebuffer、DRM、EXA和Mesa简介

    转:https://www.cnblogs.com/shoemaker/p/linux_graphics02.html 1. Framebuffer Framebuffer驱动提供基本的显示,fram ...

  2. Could not fetch URL https://pypi.org/simple/pip/: There was a problem confir

    这个问题其实是无意中解决的:因为在网上找不到解决办法,是我在yum -y installl wget后,自动就好了,安装wget的时候,可能更新了openssl的缘故吧.

  3. oracle中检索结果汉字首字母排序详解

    今天写需求,要求将结果按照成本中心首字母排序,平且空放在最前面. 进入正题: 1.使用oracle自带的函数: 按照首字母排序:nlssort(xxx,'NLS_SORT=SCHINESE_PINYI ...

  4. 关于Hystrix

    RPC远程调用过程中如何防止服务雪崩效用 微服务中如何保护服务 Hystrix是一个微服务中关于服务保护框架,在分布式中能够实现对服务容错.出错之后的预备方案 背景 在今天,基于SOA的架构已经大行其 ...

  5. 针对oracle集群的连接配置

    Java连接oracle数据库集群的配置:<DB NAME="WFS" DRIVER="oracle.jdbc.driver.OracleDriver" ...

  6. java arrays类学习

    java.util.Arrays类能方便地操作数组,它提供的所有方法都是静态的. 具有以下功能: (1)给数组赋值:通过fill方法. (2)对数组排序:通过sort方法,按升序. (3)比较数组:通 ...

  7. R语言笔记003——set.seed()函数

    set.seed()函数 set.seed()设定生成随机数的种子,让样本可重复. > x<-rnorm() # 生成4个随机数 > x [] 0.6599492 0.5881863 ...

  8. Spark-运行时架构

    Spark运行时架构 在分布式环境下,Spark集群采用的时主/从结构.在一个Spark集群中,有一个节点负责中央协调,调度各个分布式工作节点.这个中央协调节点被称为驱动器(Driver),与之对应的 ...

  9. java连接SQL数据库(JDBC)相关设置

    2016-06-14 一.SQL server中的相关设置(以sql server 2012 版本为例) 建立一个SQL server 身份认证的服务器登录名 首先启动SQL客户端,以windows身 ...

  10. 刻录DVD.Win7系统盘(U盘)

    ZC:Win7x86的U盘安装盘做好之后,U盘 里面会留有 引导信息,在以后不想要它(引导信息)的时候 该如果将它删掉?直接普通的格式化 能行吗? ZC:(20180423)发现,UltraISO制作 ...