Python collections系列之单向队列
单向队列(deque)
单项队列(先进先出 FIFO )
1、创建单向队列
import queue q = queue.Queue() q.put('')
q.put('evescn')
2、查看单向队列
# 单向队列是先进先出,要查看单向队列,需使用get获取单向队列的值 print(q.get())
print(q.get()) 输出结果:
123
evescn
3、单向队列和双向队列的区别
# 双向队列:
调用:import collections
collections.deque() 队列左边右边都可插入/获取数据 # 单向队列:
调用:import queue
queue.Queue 只能右端插入数据,左端获取数据
4、查看单向队列的方法
>>> dir(q)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_get', '_init', '_put', '_qsize', 'all_tasks_done', 'empty', 'full', 'get', 'get_nowait', 'join', 'maxsize', 'mutex', 'not_empty', 'not_full', 'put', 'put_nowait', 'qsize', 'queue', 'task_done', 'unfinished_tasks']
class Queue:
"""Create a queue object with a given maximum size. If maxsize is <= 0, the queue size is infinite.
"""
def __init__(self, maxsize=0):
self.maxsize = maxsize
self._init(maxsize)
# mutex must be held whenever the queue is mutating. All methods
# that acquire mutex must release it before returning. mutex
# is shared between the three conditions, so acquiring and
# releasing the conditions also acquires and releases mutex.
self.mutex = _threading.Lock()
# Notify not_empty whenever an item is added to the queue; a
# thread waiting to get is notified then.
self.not_empty = _threading.Condition(self.mutex)
# Notify not_full whenever an item is removed from the queue;
# a thread waiting to put is notified then.
self.not_full = _threading.Condition(self.mutex)
# Notify all_tasks_done whenever the number of unfinished tasks
# drops to zero; thread waiting to join() is notified to resume
self.all_tasks_done = _threading.Condition(self.mutex)
self.unfinished_tasks = 0 def task_done(self):
"""Indicate that a formerly enqueued task is complete. Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete. If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue). Raises a ValueError if called more times than there were items
placed in the queue.
"""
self.all_tasks_done.acquire()
try:
unfinished = self.unfinished_tasks - 1
if unfinished <= 0:
if unfinished < 0:
raise ValueError('task_done() called too many times')
self.all_tasks_done.notify_all()
self.unfinished_tasks = unfinished
finally:
self.all_tasks_done.release() def join(self):
"""Blocks until all items in the Queue have been gotten and processed. The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks.
"""
self.all_tasks_done.acquire()
try:
while self.unfinished_tasks:
self.all_tasks_done.wait()
finally:
self.all_tasks_done.release() def qsize(self):
"""Return the approximate size of the queue (not reliable!)."""
self.mutex.acquire()
n = self._qsize()
self.mutex.release()
return n def empty(self):
"""Return True if the queue is empty, False otherwise (not reliable!)."""
self.mutex.acquire()
n = not self._qsize()
self.mutex.release()
return n def full(self):
"""Return True if the queue is full, False otherwise (not reliable!)."""
self.mutex.acquire()
n = 0 < self.maxsize == self._qsize()
self.mutex.release()
return n def put(self, item, block=True, timeout=None):
"""Put an item into the queue. If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until a free slot is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Full exception if no free slot was available within that time.
Otherwise ('block' is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception ('timeout'
is ignored in that case).
"""
self.not_full.acquire()
try:
if self.maxsize > 0:
if not block:
if self._qsize() == self.maxsize:
raise Full
elif timeout is None:
while self._qsize() == self.maxsize:
self.not_full.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = _time() + timeout
while self._qsize() == self.maxsize:
remaining = endtime - _time()
if remaining <= 0.0:
raise Full
self.not_full.wait(remaining)
self._put(item)
self.unfinished_tasks += 1
self.not_empty.notify()
finally:
self.not_full.release() def put_nowait(self, item):
"""Put an item into the queue without blocking. Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.
"""
return self.put(item, False) def get(self, block=True, timeout=None):
"""Remove and return an item from the queue. If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until an item is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Empty exception if no item was available within that time.
Otherwise ('block' is false), return an item if one is immediately
available, else raise the Empty exception ('timeout' is ignored
in that case).
"""
self.not_empty.acquire()
try:
if not block:
if not self._qsize():
raise Empty
elif timeout is None:
while not self._qsize():
self.not_empty.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = _time() + timeout
while not self._qsize():
remaining = endtime - _time()
if remaining <= 0.0:
raise Empty
self.not_empty.wait(remaining)
item = self._get()
self.not_full.notify()
return item
finally:
self.not_empty.release() def get_nowait(self):
"""Remove and return an item from the queue without blocking. Only get an item if one is immediately available. Otherwise
raise the Empty exception.
"""
return self.get(False) # Override these methods to implement other queue organizations
# (e.g. stack or priority queue).
# These will only be called with appropriate locks held # Initialize the queue representation
def _init(self, maxsize):
self.queue = deque() def _qsize(self, len=len):
return len(self.queue) # Put a new item in the queue
def _put(self, item):
self.queue.append(item) # Get an item from the queue
def _get(self):
return self.queue.popleft()
Queue.Queue
5、单向队列常用的方法
# put 向队列中放入一个数
# get 取出一个数 import queue q = queue.Queue() q.put('')
q.put('evescn') print(q.get())
print(q.get()) 输出结果: # 先进先出
123
evescn
# qsize 统计当前队列长度 import queue q = queue.Queue() q.put('')
q.put('evescn') print(q.qsize() # 输出:2
# empty 队列是否为空 import queue q = queue.Queue() print(q.empty() # 输出:True
# full 队列是否满了,返回True import queue q = queue.Queue(1) print(q.empty())
print(q.full()) q.put('') print(q.full()) # 输出:
True
False
True
Python collections系列之单向队列的更多相关文章
- Python collections系列之双向队列
双向队列(deque) 一个线程安全的双向队列 1.创建一个双向队列 import collections d = collections.deque() d.append(') d.appendle ...
- Python collections系列之有序字典
有序字典(orderedDict ) orderdDict是对字典类型的补充,他记住了字典元素添加的顺序 1.创建一个有序字典 import collections dic = collections ...
- Python collections系列之可命名元组
可命名元组(namedtuple) 根据nametuple可以创建一个包含tuple所有功能以及其他功能的类 1.创建一个坐标类 import collections # 创建类, defaultd ...
- Python collections系列之默认字典
默认字典(defaultdict) defaultdict是对字典的类型的补充,它默认给字典的值设置了一个类型. 1.创建默认字典 import collections dic = collecti ...
- Python collections系列之计数器
计数器(counter) Counter是对字典(无序)类型的补充,用于追踪值的出现次数. 使用counter需要导入 collections 类 ps:具备字典的所有功能 + 自己的功能 1.创建一 ...
- Python 第三篇(下):collections系列、集合(set)、单双队列、深浅copy、内置函数
一.collections系列: collections其实是python的标准库,也就是python的一个内置模块,因此使用之前导入一下collections模块即可,collections在py ...
- python递归、collections系列以及文件操作进阶
global log 127.0.0.1 local2 daemon maxconn log 127.0.0.1 local2 info defaults log global mode http t ...
- python之路(二)-collections系列
collections提供了一些比较方便的方法,使用时需要先导入模块 导入模块: import collections 1. 计数器Counter 统计参数中出现的次数,以字典的方式返回结果,参数可以 ...
- Python之set集合与collections系列
1>set集合:是一个无序且不重复的元素集合:访问速度快,解决了重复的问题: s2 = set(["che","liu","haha" ...
随机推荐
- DNS 安装配置
DNS 安装配置 实验环境 一台主机:Linux Centos 6.5 32位 安装包: DNS服务:bind.i686 DNS测试工具:bind-utils DNS 服务安装 1.yum安装DNS服 ...
- awk中的常用关于处理字符串的函数
1.替换字符串中的某一部分. 函数:gensub(/rexpr/,"replace","g","string"),gensub返回一个新的字 ...
- CentOS 安装 Zabbix
一.安装 centos7 网易下载 http://mirrors.163.com/centos/7.2.1511/isos/x86_64/CentOS-7-x86_64-DVD-1511.torren ...
- Spark基本概念快速入门
Spark集群 一组计算机的集合,每个计算机节点作为独立的计算资源,又可以虚拟出多个具备计算能力的虚拟机,这些虚拟机是集群中的计算单元.Spark的核心模块专注于调度和管理虚拟机之上分布式计算任务 ...
- HDU 6096 AC自动机
n个字符串 m个询问 每个询问给出前后缀 并且不重合 问有多少个满足 m挺大 如果在线只能考虑logn的算法 官方题解:对n个串分别存正序倒序 分别按照字典序sort 每一个串就可以被化作一个点 那么 ...
- vue.js计算属性 vs methods
计算属性:Vue.js 模板内的表达式非常便利,但是缺点就是只能用于简单的运算,如果模板中有太多的逻辑运算会让模板不堪重负且难以维护.恰恰计算属性可以处理复杂的逻辑运算,也就是说对于任何复杂逻辑你都应 ...
- UOJ132 【NOI2015】小园丁与老司机
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- Intel Code Challenge Elimination Round (Div.1 + Div.2, combined) C. Destroying Array
C. Destroying Array time limit per test 1 second memory limit per test 256 megabytes input standard ...
- 51nod 1060 最复杂的数 反素数
1060 最复杂的数 基准时间限制:1 秒 空间限制:131072 KB 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 ...
- numpy nonzero与isnan
nonzero 直接看例子: In [83]: x = np.array([[1,0,0], [0,2,0], [1,1,0]]) In [84]: x.shape Out[84]: (3L, 3L) ...