一、前人种树

博客:浅谈LCA的在线算法ST表

二、沙场练兵

题目:POJ 1330 Nearest Common Ancestors

题解博客:http://www.cnblogs.com/Missa/archive/2012/10/01/2709889.html

代码:

/*
* LCA (POJ 1330)
* 在线算法 DFS + ST
*/
const int MAXN = 10010;
int rmq[2*MAXN];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[2*MAXN];
int dp[2*MAXN][20];//最小值对应的下标
void init(int n)
{
mm[0] = -1;
for(int i = 1;i <= n;i++)
{
mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
dp[i][0] = i;
}
for(int j = 1; j <= mm[n];j++)
for(int i = 1; i + (1<<j) - 1 <= n; i++)
dp[i][j] = rmq[dp[i][j-1]] <
rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b)swap(a,b);
int k = mm[b-a+1];
return rmq[dp[a][k]] <=
rmq[dp[b-(1<<k)+1][k]]?dp[a][k]:dp[b-(1<<k)+1][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[MAXN*2];
int tot,head[MAXN]; int F[MAXN*2];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt; ST st;
void init()
{
tot = 0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -1;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+1);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = 0;
dfs(root,root,0);
st.init(2*node_num-1);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool flag[MAXN];
int main()
{
int T;
int N;
int u,v;
scanf("%d",&T);
while(T--)
{
scanf("%d",&N);
init();
memset(flag,false,sizeof(flag));
for(int i = 1; i < N;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
flag[v] = true;
}
int root;
for(int i = 1; i <= N;i++)
if(!flag[i])
{
root = i;
break;
}
LCA_init(root,N);
scanf("%d%d",&u,&v);
printf("%d\n",query_lca(u,v));
}
return 0;
}

LCA(最近公共祖先)——dfs+ST 在线算法的更多相关文章

  1. POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)

    1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...

  2. POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14902   Accept ...

  3. LCA最近公共祖先(Tarjan离线算法)

    这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...

  4. HihoCoder 1067 最近公共祖先(ST离线算法)

    最近公共祖先·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上上回说到,小Hi和小Ho用非常拙劣——或者说粗糙的手段山寨出了一个神奇的网站,这个网站可以计算出某两个 ...

  5. LCA(最近公共祖先)之倍增算法

    概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介 ...

  6. 求LCA最近公共祖先的离线Tarjan算法_C++

    这个Tarjan算法是求LCA的算法,不是那个强连通图的 它是 离线 算法,时间复杂度是 O(m+n),m 是询问数,n 是节点数 它的优点是比在线算法好写很多 不过有些题目是强制在线的,此类离线算法 ...

  7. POJ 1330 Nearest Common Ancestors (dfs+ST在线算法)

    详细讲解见:https://blog.csdn.net/liangzhaoyang1/article/details/52549822 zz:https://www.cnblogs.com/kuang ...

  8. lca最近公共祖先(st表/倍增)

    大体思路 1.求出每个元素在树中的深度 2.用st表预处理的方法处理出f[i][j],f[i][j]表示元素i上方第2^j行对应的祖先是谁 3.将较深的点向上挪,直到两结点的深度相同 4.深度相同后, ...

  9. POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13370   Accept ...

随机推荐

  1. JavaScript高阶函数map/reduce、filter和sort

    map() 举例说明,比如我们有一个函数f(x)=x²,要把这个函数作用在一个数组[1,2,3,4,5,6,7,8,9]上. 由于map()方法定义在JavaScript的Array中,我们调用Arr ...

  2. Vue nodejs商城项目- 前后端数据传递

    .利用Mongoose查询MongoDB 通过mongoose插件可以简捷地从mondodb中获取数据,首先安装mongoose: cnpm install mongoose --save   使用m ...

  3. SpringBoot非官方教程 | 第五篇:springboot整合 beatlsql

    转载请标明出处: 原文首发于:https://www.fangzhipeng.com/springboot/2017/07/11/springboot5-beatlsql/ 本文出自方志朋的博客 Be ...

  4. 工具类(过滤接口空值, value 或 空字符串) - iOS

    为了便于日常开发效率,因此创建了一些小的工具类便于使用.具体 code 如下:声明: #import <Foundation/Foundation.h> #import <UIKit ...

  5. tidb损坏tikv节点怎么恢复集群

    tikv节点宕机(机器再起不来),或者数据节点被rm -rf 掉了怎么办 正常情况下tikv节点down掉了.此时不要去执行store delete  store_id .数据一般可以正常访问,但是如 ...

  6. 关系型数据库设计——E-R图

    一.数据管理技术的三个发展阶段: 1)人工管理阶段(20世纪50年代中期) 特点:数据不保存:应用程序管理数据:数据不共享:数据没有独立性: 2)文件系统阶段(20世纪50年代后—60年代)特点:数据 ...

  7. jstl的<c:set 的问题

    在使用jstl提供的set标签对javabean进行处理的时候发现直接打bean的名字会错 <jsp:useBean id="kkk" class="com.log ...

  8. java后台去除JSON数组的重复值

    假设原始Json数组是这样的 原始JSONArry:[{"Value":"15153129877","Key":"09770985 ...

  9. css实现未知元素宽高垂直居中和水平居中的方法

    第一种:display:table-cell的方式 .container { /*父级容器*/ display:table-cell; text-align:center; vertical-alig ...

  10. Go语言使用百度翻译api

    Go语言使用百度翻译api 之前做过一个使用百度翻译api的工具,这个工具用于用户的自动翻译功能,是使用C#调用百度翻译api接口,既然在学习Go语言,那必然也是要使用Go来玩耍一番.这里我是这么安排 ...