In finance, Internal Rate of Return (IRR) is the discount rate of an investment when NPV equals zero. Formally, given TCF0CF1, ..., CFT, then IRR is the solution to the following equation:

NPV = CF0 +  +  + K +  = 0

Your task is to find all valid IRRs. In this problem, the initial cash-flow CF0 < 0, while other cash-flows are all positive (CFi > 0 for all i = 1, 2,...).

Important: IRR can be negative, but it must be satisfied that IRR > - 1.

Input

There will be at most 25 test cases. Each test case contains two lines. The first line contains a single integer T ( 1T10), the number of positive cash-flows. The second line contains T + 1 integers: CF0CF1,CF2, ..., CFT, where CF0 < 0, 0 < CFi < 10000 ( i = 1, 2,..., T). The input terminates by T = 0.

Output

For each test case, print a single line, containing the value of IRR, rounded to two decimal points. If noIRR exists, print ``No" (without quotes); if there are multiple IRRs, print ``Too many"(without quotes).

题目大意:给出CF[0]<0,CF[i]>0,i>0,求IRR(IRR>-1)令NPV = 0.

思路:设f(IRR) = NPV,这就变成了一个函数,稍微观察一下,可以发现当IRR∈(-1, +∞)的时候是单调递减的(好像是吧做完忘了),这样我们就可以二分答案0点了。当IRR无限接近-1的时候,f(IRR)→+∞(好像是吧),当IRR→+∞时,f(IRR)→CF[0]<0,令left = -1、right = 1e5(我也不知道该取什么我随便取的然后AC了),随便二分一下就好。

PS:恩?说完了?那什么时候输出No和Too many啊?关于这个坑爹的问题,看完前面的分析,笔者完全不知道什么时候会出现这两个答案,于是妥妥地没将这两个东西写进代码然后AC了。这里还有一个小技巧,题目的样例完全没有出现No和Too many这两种答案,很可能说明这两种答案都是不存在的。比如很多的题目说如果什么什么得不到答案就输出-1那样,它的样例大多都会有一个是输出-1的,当然这不是绝对的……

代码(15MS):

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-; inline int sgn(double x) {
if(fabs(x) < EPS) return ;
return x > ? : -;
} int CF[MAXN];
int T; double f(double IRR) {
double ret = CF[], tmp = + IRR;
for(int i = ; i <= T; ++i) {
ret += CF[i] / tmp;
tmp = tmp * ( + IRR);
}
return ret;
} double solve() {
double ans = -;
double L = -, R = 1e5;
while(R - L > EPS) {
double mid = (R + L) / ;
if(sgn(f(mid)) == ) L = mid;
else R = mid;
}
return ans = L;
} int main() {
while(scanf("%d", &T) != EOF) {
if(T == ) break;
for(int i = ; i <= T; ++i) scanf("%d", &CF[i]);
//double t; while(cin>>t) cout<<f(t)<<endl;
printf("%.2f\n", solve());
}
}

UVA 11881 Internal Rate of Return(数学+二分)的更多相关文章

  1. UVA 11881 - Internal Rate of Return - [二分]

    依然是来自2017/9/17的周赛水题…… 题目链接:https://cn.vjudge.net/problem/UVA-11881 题解: 观察这个函数: 由于CF[i]固定值,因此NPV(IRR) ...

  2. UVA.10474 Where is the Marble ( 排序 二分查找 )

    UVA.10474 Where is the Marble ( 排序 二分查找 ) 题意分析 大水题一道.排序好找到第一个目标数字的位置,返回其下标即可.暴力可过,强行写了一发BS,发现错误百出.应了 ...

  3. UVA 10668 - Expanding Rods(数学+二分)

    UVA 10668 - Expanding Rods 题目链接 题意:给定一个铁棒,如图中加热会变成一段圆弧,长度为L′=(1+nc)l,问这时和原来位置的高度之差 思路:画一下图能够非常easy推出 ...

  4. Success Rate CodeForces - 807C (数学+二分)

    You are an experienced Codeforces user. Today you found out that during your activity on Codeforces ...

  5. 【UVA 11865】 Stream My Contest (二分+MDST最小树形图)

    [题意] 你需要花费不超过cost元来搭建一个比赛网络.网络中有n台机器,编号0~n-1,其中机器0为服务器,其他机器为客户机.一共有m条可以使用的网线,其中第i条网线的发送端是机器ui,接收端是机器 ...

  6. AtCoder Express(数学+二分)

    D - AtCoder Express Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statement In ...

  7. HDU 6216 A Cubic number and A Cubic Number(数学/二分查找)

    题意: 给定一个素数p(p <= 1e12),问是否存在一对立方差等于p. 分析: 根据平方差公式: 因为p是一个素数, 所以只能拆分成 1*p, 所以 a-b = 1. 然后代入a = b + ...

  8. UVA 11419 SAM I AM(最大二分匹配&最小点覆盖:König定理)

    题意:在方格图上打小怪,每次可以清除一整行或一整列的小怪,问最少的步数是多少,又应该在哪些位置操作(对输出顺序没有要求). 分析:最小覆盖问题 这是一种在方格图上建立的模型:令S集表示“行”,T集表示 ...

  9. CF 483B. Friends and Presents 数学 (二分) 难度:1

    B. Friends and Presents time limit per test 1 second memory limit per test 256 megabytes input stand ...

随机推荐

  1. o'Reill的SVG精髓(第二版)学习笔记——第一章

    1.1图形系统 计算机中描述图形信息的两大系统是栅格系统(raster graphics)和矢量图形(vector graphics) 1.1.4矢量图形的用途 ①计算机辅助绘图(CAD)程序. ②设 ...

  2. LeetCode2.两数相加 JavaScript

    给定两个非空链表来表示两个非负整数.位数按照逆序方式存储,它们的每个节点只存储单个数字.将两数相加返回一个新的链表. 你可以假设除了数字 0 之外,这两个数字都不会以零开头. 示例: 输入:(2 -& ...

  3. 简析--HashCode

    内容转载自:http://www.cnblogs.com/szlbm/p/5806226.html 哈希表 在了解HashCode之前,我们先来认识一下哈希表; 散列表(Hash table,也叫哈希 ...

  4. Navicat for Mysql中错误提示索引过长1071-max key length is 767 byte

    1.建用户信息表 tb_person_info create table tb_person_info( user_id int(10) auto_increment, `name` varchar( ...

  5. JavaScript--获取页面盒子中鼠标相对于盒子上、左边框的坐标

    分析: 外层边框是浏览器边框,内部盒子是页面的一个盒子,绿点是盒子中鼠标的位置.鼠标相对盒子边框的坐标=页面中(注意不是浏览器)鼠标坐标-盒子相对于浏览器边框的偏移量 第一步:求浏览器边框位置 x=e ...

  6. 【c学习-14】

    /*练习*/ #include int testFeiunction(b[],n){ b[1]=1; n=10; } int main(){ int a[10]={1,2,3,4,5}; int n= ...

  7. 做 JAVA 开发,怎能不用 IDEA!

    用了 IDEA,感觉不错.决定弃用 Eclipse 入门教程: www.cnblogs.com/yangyquin/p/5285272.html

  8. dot安装和使用

    1.安装 apt-get install graphviz 如果报错说缺少依赖文件,则使用apt自动安装依赖项 apt-get -f install 我在安装中报错: dpkg: unrecovera ...

  9. python2.7练习小例子(九)

        9)1.题目:暂停一秒输出.     程序分析:使用 time 模块的 sleep() 函数.     程序源代码: #!/usr/bin/python # -*- coding: UTF-8 ...

  10. 使用 -命令行-给-python-安装whl文件,

    whl文件下载到哪个位置,命令行就切入到哪里: 我的在D盘目录下,所以命令行切进D盘(CD):方式如下: 列出<用户目录>下的目录(dir): 因为我安装了2个版本的python所以给py ...