# encoding:utf-8
import getopt
from sklearn.preprocessing import MinMaxScaler
import os,time
from multiprocessing import Process, Manager
import pandas as pd
import numpy as np
import itertools
from sklearn.model_selection import KFold
from sklearn import svm
# from sklearn.cross_validation import train_test_split
import math
from sklearn.model_selection import *
import sklearn.ensemble
from sklearn import metrics
from sklearn.metrics import roc_curve, auc
import sys
from sklearn.model_selection import GridSearchCV
import warnings
whole_result=[]
input_files=""
whole_dimension=[]
default_l = 1
cross_validation_value = 10
CPU_value = 1
opts, args = getopt.getopt(sys.argv[1:], "hi:l:c:n:", )
final_out_to_excel=[]
row0 = [u'特征集', u'样本个数', u'分类器', u'Accuracy', u'Precision', u'Recall', u'SN', u'SP',
u'Gm', u'F_measure', u'F_score', u'MCC', u'ROC曲线面积', u'tp', u'fn', u'fp', u'tn']
final_out_to_excel.append(row0) #above was used to generate xlsx format Excel file
for op, value in opts:
if op == "-i":
input_files = str(value)
input_files = input_files.replace(" ", "").split(',')
for input_file in input_files:
if input_file == "":
print("Warning: please insure no blank in your input files !")
sys.exit()
elif op == "-l":
if int(value) == 1:
default_l = 1
else:
default_l = -1
elif op == "-c":
cross_validation_value = int(value) elif op == "-n":
CPU_value = int(value) def performance(labelArr, predictArr):
#labelArr[i] is actual value,predictArr[i] is predict value
TP = 0.; TN = 0.; FP = 0.; FN = 0.
for i in range(len(labelArr)):
if labelArr[i] == 1 and predictArr[i] == 1:
TP += 1.
if labelArr[i] == 1 and predictArr[i] == 0:
FN += 1.
if labelArr[i] == 0 and predictArr[i] == 1:
FP += 1.
if labelArr[i] == 0 and predictArr[i] == 0:
TN += 1.
if (TP + FN)==0:
SN=0
else:
SN = TP/(TP + FN) #Sensitivity = TP/P and P = TP + FN
if (FP+TN)==0:
SP=0
else:
SP = TN/(FP + TN) #Specificity = TN/N and N = TN + FP
if (TP+FP)==0:
precision=0
else:
precision=TP/(TP+FP)
if (TP+FN)==0:
recall=0
else:
recall=TP/(TP+FN)
GM=math.sqrt(recall*SP)
#MCC = (TP*TN-FP*FN)/math.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))
return precision,recall,SN,SP,GM,TP,TN,FP,FN def worker(X_train, y_train, cross_validation_value, CPU_value, input_file, share_y_predict_dict, share_y_predict_proba_dict):
print("子进程执行中>>> pid={0},ppid={1}".format(os.getpid(),os.getppid()))
svc = svm.SVC(probability=True)
parameters = {'kernel': ['rbf'], 'C':map(lambda x:2**x,np.linspace(-2,5,7)), 'gamma':map(lambda x:2**x,np.linspace(-5,2,7))}
clf = GridSearchCV(svc, parameters, cv=cross_validation_value, n_jobs=CPU_value, scoring='accuracy')
clf.fit(X_train, y_train)
C=clf.best_params_['C']
gamma=clf.best_params_['gamma']
print('c:',C,'gamma:',gamma) y_predict=cross_val_predict(svm.SVC(kernel='rbf',C=C,gamma=gamma,),X_train,y_train,cv=cross_validation_value,n_jobs=CPU_value)
y_predict_prob=cross_val_predict(svm.SVC(kernel='rbf',C=C,gamma=gamma,probability=True),X_train,y_train,cv=cross_validation_value,n_jobs=CPU_value,method='predict_proba')
input_file = input_file.replace(".csv","")
y_predict_path = input_file + "_predict.csv"
y_predict_proba_path = input_file + "_predict_proba.csv"
share_y_predict_dict[input_file] = y_predict
share_y_predict_proba_dict[input_file] = y_predict_prob[:,1]
pd.DataFrame(y_predict).to_csv(y_predict_path, header = None, index = False)
pd.DataFrame(y_predict_prob[:,1]).to_csv(y_predict_proba_path, header = None, index = False)
print("子进程终止>>> pid={0}".format(os.getpid())) if __name__=="__main__":
print("主进程执行中>>> pid={0}".format(os.getpid()))
manager = Manager()
share_y_predict_dict = manager.dict()
share_y_predict_proba_dict = manager.dict()
ps=[]
if default_l == 1:
data = ""
x_len = 1000
y_len = 1000
file_len = len(input_files)
threshold = file_len/2
for index, input_file in enumerate(input_files):
data = pd.read_csv(input_file,header=None)
(x_len,y_len) = data.shape X_train = data.iloc[:,0:y_len-1]
y_train = data.iloc[:,[y_len-1]]
X_train = X_train.values
y_train = y_train.values
y_train = y_train.reshape(-1)
p=Process(target=worker,name="worker"+str(index),args=(X_train, y_train, cross_validation_value, CPU_value,input_file,share_y_predict_dict,share_y_predict_proba_dict))
ps.append(p)
# 开启进程
for index, input_file in enumerate(input_files):
ps[index].start() # 阻塞进程
for index, input_file in enumerate(input_files):
ps[index].join()
ensembling_prediction = 0
ensembling_prediction_proba = 0
for key, value in share_y_predict_dict.items():
ensembling_prediction = ensembling_prediction + value
ensembling_prediction = [1 if e > threshold else 0 for e in ensembling_prediction]
print(ensembling_prediction)
for key, value in share_y_predict_proba_dict.items():
ensembling_prediction_proba = ensembling_prediction_proba + value
ensembling_prediction_proba = ensembling_prediction_proba/3.0
print(ensembling_prediction_proba/3.0)
ACC=metrics.accuracy_score(y_train,ensembling_prediction)
print("ACC",ACC)
precision, recall, SN, SP, GM, TP, TN, FP, FN = performance(y_train, ensembling_prediction)
F1_Score=metrics.f1_score(y_train, ensembling_prediction)
F_measure=F1_Score
MCC=metrics.matthews_corrcoef(y_train, ensembling_prediction)
auc = metrics.roc_auc_score(y_train, ensembling_prediction_proba)
pos=TP+FN
neg=FP+TN
savedata=[str(input_files),"正:"+str(len(y_train[y_train == 1]))+'负:'+str(len(y_train[y_train == 1])),'svm',ACC,precision, recall,SN,SP, GM,F_measure,F1_Score,MCC,auc,TP,FN,FP,TN]
final_out_to_excel.append(savedata)
print("final_out_to_excel",final_out_to_excel)
pd.DataFrame(ensembling_prediction).to_csv("voting_prediction_label.csv", header = None, index = False)
pd.DataFrame(ensembling_prediction_proba).to_csv("voting_prediction_proba_label.csv", header = None, index = False)
pd.DataFrame(final_out_to_excel).to_excel('output'+'.xlsx',sheet_name="results",index=False,header=False)
print("主进程终止")
else:
data = ""
x_len = 1000
y_len = 1000
file_len = len(input_files)
threshold = file_len/2
for index, input_file in enumerate(input_files):
data = pd.read_csv(input_file,header=None)
(x_len,y_len) = data.shape
X_train = data.values
half_sequence_number = x_len / 2
y_train = np.array([1 if e < half_sequence_number else 0 for (e,value) in enumerate(X_train)])
y_train = y_train.reshape(-1)
print("default y_train: ", y_train)
p=Process(target=worker,name="worker"+str(index),args=(X_train, y_train, cross_validation_value, CPU_value,input_file,share_y_predict_dict,share_y_predict_proba_dict))
ps.append(p)
# 开启进程
for index, input_file in enumerate(input_files):
ps[index].start() # 阻塞进程
for index, input_file in enumerate(input_files):
ps[index].join()
ensembling_prediction = 0
ensembling_prediction_proba = 0
for key, value in share_y_predict_dict.items():
ensembling_prediction = ensembling_prediction + value
ensembling_prediction = [1 if e > threshold else 0 for e in ensembling_prediction]
print(ensembling_prediction)
for key, value in share_y_predict_proba_dict.items():
ensembling_prediction_proba = ensembling_prediction_proba + value
ensembling_prediction_proba = ensembling_prediction_proba/3.0
print(ensembling_prediction_proba/3.0)
ACC=metrics.accuracy_score(y_train,ensembling_prediction)
print("ACC",ACC)
precision, recall, SN, SP, GM, TP, TN, FP, FN = performance(y_train, ensembling_prediction)
F1_Score=metrics.f1_score(y_train, ensembling_prediction)
F_measure=F1_Score
MCC=metrics.matthews_corrcoef(y_train, ensembling_prediction)
auc = metrics.roc_auc_score(y_train, ensembling_prediction_proba)
pos=TP+FN
neg=FP+TN
savedata=[str(input_files),"正:"+str(len(y_train[y_train == 1]))+'负:'+str(len(y_train[y_train == 1])),'svm',ACC,precision, recall,SN,SP, GM,F_measure,F1_Score,MCC,auc,TP,FN,FP,TN]
final_out_to_excel.append(savedata)
print("final_out_to_excel",final_out_to_excel)
pd.DataFrame(ensembling_prediction).to_csv("voting_prediction_label.csv", header = None, index = False)
pd.DataFrame(ensembling_prediction_proba).to_csv("voting_prediction_proba_label.csv", header = None, index = False)
pd.DataFrame(final_out_to_excel).to_excel('output'+'.xlsx',sheet_name="results",index=False,header=False)
print("主进程终止")

该代码用于实现多个特征数据的集合输入输入同一个程序中实现程序的投票,并输入结果

最终会生成

  • 文件名_predict.csv  对应文件的预测标签
  • 文件名_predict_prob.csv 对应文件的预测分数
  • output.xlsx  最终的评估结果

example

python simple_voting.py -l 1 -c 5 -n 1 -i 1.csv,2.csv,3.csv
  • -i :表示输入的特征文件,以逗号分隔多个特征文件
  • -l : 表示是否默认csv格式特征文件尾有标签,默认为1(因此需要保证你的csv文件中尾部带有标签(1,0)),若csv默认为前一半标签为1,后一半为0,则将-l设为0
  • -c :几折交叉验证,5 代表五折交叉验证
  • -n : 是否开多进程在单个数据集训练的时候,因为是多个数据集,所以已经实现了多进程,这边设置为1较为稳妥,如果cpu核数不是很多请不要轻易增加这个值,否则可能出现不知名bug

github链接

svm+voting的更多相关文章

  1. 基于PCA和SVM的人脸识别

    程序中采用的数据集是ORL人脸库,该人脸库共有400副人脸图像,40人,每人10幅,大小为112*92像素,同一个人的表情,姿势有少许变化. 程序的流程主要分为三部分,数据的预处理(PCA降维和规格化 ...

  2. 机器学习:集成学习(Soft Voting Classifier)

    一.Hard Voting 与 Soft Voting 的对比 1)使用方式 voting = 'hard':表示最终决策方式为 Hard Voting Classifier: voting = 's ...

  3. 集成学习-Majority Voting

    认识 集成学习(Ensemble Methods), 首先是一种思想, 而非某种模型, 是一种 "群体决策" 的思想, 即对某一特定问题, 用多个模型来进行训练. 像常见的单个模型 ...

  4. 【笔记】集成学习入门之soft voting classifier和hard voting classifier

    集成学习入门之soft voting classifier和hard voting classifier 集成学习 通过构建并结合多个学习器来完成学习任务,一般是先产生一组"个体学习器&qu ...

  5. EasyPR--开发详解(6)SVM开发详解

    在前面的几篇文章中,我们介绍了EasyPR中车牌定位模块的相关内容.本文开始分析车牌定位模块后续步骤的车牌判断模块.车牌判断模块是EasyPR中的基于机器学习模型的一个模块,这个模型就是作者前文中从机 ...

  6. 8.SVM用于多分类

    从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳 ...

  7. 5.SVM核函数

    核函数(Kernels) 定义 1.1 (核或正定核) 设是中的一个子集,称定义在上的函数是核函数,如果存在一个从到Hilbert空间的映射 使得对任意的,都成立.其中表示Hilbert空间中的内积. ...

  8. 4. SVM分类器求解(2)

    最优间隔分类器(optimal margin classifier) 重新回到SVM的优化问题: 我们将约束条件改写为: 从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的系数,也 ...

  9. 2. SVM线性分类器

    在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念.用一个二维空间里仅有两类样本的分类问题来举个小例子.如图所示 和是要区分的两个类别,在二维平面中它们的样本如上图所示.中间的直 ...

随机推荐

  1. <body> 中的 JavaScript

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  2. git submodule update --init --recursive

    最近在跑好几个模型,视频检测,物体检测,搭建mxnet时,有点问题,记录一下. 视频检测,mxnet需要用指定版本,git 切换到指定版本后,update了,但是依然提示说有些库找不到.想了想,应该是 ...

  3. sharepoint2013配置开发环境

  4. Linux中软件使用笔记

    刚刚接触Linux的小白,难免会碰到各种小问题,不要灰心,总有办法的... 1.搜狗输入法崩溃,打不出中文?都是乱码?一招制敌! 在Terminal中输入下面命令后重启电脑即可重生- 还有,是Sogo ...

  5. Restrramework源码(包含组件)分析

    1.总体流程分析 rest_framework/view.py 请求通过url分发,触发as_view方法,该方法在ViewSetMixin类下 点进去查看as_view源码说明,可以看到它在正常情况 ...

  6. RL 编、解码(EncodedString、DecodedString) - iOS

    开发中对文本传输或二进制传输,都需要将传输的对象进行二进制字节的转化操作,所以无异于编.解码便会经常用到的操作; 当然除了这种方式之外,还有一种常用的 Base64,此文中不具体细谈, Base64 ...

  7. 手动创建简单webpack项目及React使用

    一.创建基本的webpack4.x项目 1.运行 npm init -y 快速初始化项目 2.在项目根目录创建src的源代码目录和dist产品目录 3.在src目录下创建 index.html 4.使 ...

  8. 小B的询问(莫队)

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  9. 【杂题总汇】AGC027 C - ABland Yard

    ◆AGC027◆C - ABland Yard 终于知道为什么比赛的时候这么多人做C题了…… +传送门+(这是beta版的) ◇ 题目(自己翻译的,不要在意细节……) P.S. (@ 2018-9-2 ...

  10. android 自定义滑动按钮

    第一接触公司项目就让我画页面,而且还涉及到我最讨厌的自定义view  但是没办法,讨厌也必须要做啊,经过百度上资源的查找,终于写出了一个滑动控件.废话不多说,上代码. package com.eton ...