Easy Finding
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 18790   Accepted: 5184

Description

Given a M×N matrix AAij ∈ {0, 1} (0 ≤ i < M, 0 ≤ j < N), could you find some rows that let every cloumn contains and only contains one 1.

Input

There are multiple cases ended by EOF. Test case up to 500.The first line of input is MN (M ≤ 16, N ≤ 300). The next M lines every line contains N integers separated by space.

Output

For each test case, if you could find it output "Yes, I found it", otherwise output "It is impossible" per line.

Sample Input

3 3
0 1 0
0 0 1
1 0 0
4 4
0 0 0 1
1 0 0 0
1 1 0 1
0 1 0 0

Sample Output

Yes, I found it
It is impossible

Source

 

Dancing Links用的数据结构是交叉十字循环双向链

而Dancing Links中的每个元素不仅是横向循环双向链中的一份子,又是纵向循环双向链的一份子。

因为精确覆盖问题的矩阵往往是稀疏矩阵(矩阵中,0的个数多于1),Dancing Links仅仅记录矩阵中值是1的元素。

对我们所举的例子,矩阵M的初始状态为

1  2   3   4  5  6  7

A  1   0   0  1  0  0  1

B  1   0   0  1  0  0  0

C  0   0   0  1 1  0   1

D  0   0   1  0 1  1   0

E  0   1   1  0  0  1  1

F  0   1    0  0  0  0  1

1、找出含1个数最少的列,即找出在子集中出现次数最少的那个元素。显然,元素1、2、3、5、6的总出现次数都为2,而我们是从左到右遍历的,故这一步的选择列号为1.

2、找出所有含有元素1的子集,即A和B,也就是第一行和第二行。现在S={}

3、我们先考虑子集A、先尝试将子集A加入到解集S中。现在S={A},

4、现在将所有和A有交集的子集从矩阵中删除。具体做法是,子集A对应3个列1,4,7。那么从矩阵中把所有在这3列中含1的行删掉。

比如对第1列,含1的行有A,B;对第4列,含1的行有A,B,C;对第7列,含1的行有A,C,E,F。 因此删除的就是A 、B、 C、 E 、F等5行

5、删除所有和A有交集的列,即第1、4、7列。

现在矩阵的状态为

2 3 5 6

D  0  1 1 1

6、由于现在的矩阵只剩下1行,且第2列为0,这意味着,当前解S={A,D}的并集中肯定不含元素2,

所以S={A,D}不是一个可行解,因此要回退到第2步的状态,然后从子集B开始求解

7、回退到步骤2将子集B加入到S中,S={B}

8、将所有和B有交集的行和列从矩阵中删除。即删除行A,B,C和列1,4,删除之后,矩阵M的新状态为

2  3 5 6  7

D  0  1 1 1  0

E 1   1  0 1 1

F  1  0  0  0 1

9、找出目前M中含1最少的列,显然这一步得到的列号为5.

10、和第5列有交集的行(即含元素5的子集)只有D。

11、将D加入到解集中,现在S={B,D}

12、删除所有和D相交的行和列,于是删除了列3,5,6和行D、E,现在矩阵的状态为

2  7

F  1  1

13、由于现在剩下的是全1行,因此把F加入到解集中,S={B,D,F},现在,容易验证这是一个可行解,算法结束

 

#include <cstdio>
#include <cstring>
const int MAXR = ;
const int MAXC = ;
const int MAXN = MAXR * MAXC + MAXC;
const int INF = MAXR * ; int n, m;
int L[MAXN], R[MAXN], U[MAXN], D[MAXN];
int C[MAXN], O[MAXN], S[MAXN], H[MAXR];
int nodeNumber; void init()
{
for(int i=;i<=m;++i)
{
L[i] = i - ;
R[i] = i + ;
U[i] = i;
D[i] = i;
C[i] = i;
O[i] = ;
S[i] = ;
}
L[] = m;
R[m] = ;
nodeNumber = m + ;
memset(H, , sizeof(H));
} void insert(int i, int j)
{
if(H[i]) //判断这一行中有没有节点
{
L[nodeNumber] = L[H[i]]; //如果有节点了,就添加一个节点,并把左指针指向第一个节点的未被更新的左指针,也就是新节点的左指针
R[nodeNumber] = H[i]; //右指针指向该行第一个节点
L[R[nodeNumber]] = nodeNumber; //更新第一个节点的左指针
R[L[nodeNumber]] = nodeNumber; //更新前一个节点的右指针
}
else
{
L[nodeNumber] = nodeNumber; //如果没有节点就添加一个节点,并把左右指针指向自己
R[nodeNumber] = nodeNumber;
H[i] = nodeNumber; //标记为该行第一个节点
} U[nodeNumber] = U[j]; //节点的上指针指向上面一个节点
D[nodeNumber] = j; //节点的下指针指向对应的列表头
U[D[nodeNumber]] = nodeNumber; //更新列表头的上指针指向当前节点
D[U[nodeNumber]] = nodeNumber; //更新上一个节点的下指针指向当前节点 C[nodeNumber] = j; //记录列号
O[nodeNumber] = i; //记录行号 ++ S[j]; //S当中记录着每列节点的个数
++ nodeNumber; //新建一个节点
} void remove(int c)
{
L[R[c]] = L[c]; //右节点的左指针指向原节点的左节点
R[L[c]] = R[c]; //左节点的右指针指向原节点的右节点
for(int i=D[c];i!=c;i=D[i]) //从该列往下第一个节点开始往下遍历
{
for(int j=R[i];j!=i;j=R[j]) //从当前行的第二个节点往右遍历,因为列已经被删除,所以第一个节点不用管
{
U[D[j]] = U[j]; //把前面删除的列上符合要求的行也删除
D[U[j]] = D[j];
-- S[C[j]]; //把相应列上对应的节点数也减少1个
}
}
} void resume(int c)
{
for(int i=U[c];i!=c;i=U[i]) //从该列最后一个节点往上遍历,不遍历列表头节点
{
for(int j=L[i];j!=i;j=L[j]) //从该行最后一个节点往左遍历,不遍历第一个节点
{
++ S[C[j]]; //列上面恢复一个节点,节点数也+1
D[U[j]] = j; //恢复行
U[D[j]] = j;
}
}
R[L[c]] = c; //最后恢复列
L[R[c]] = c;
} bool dfs(int k)
{
if(!R[]) //如果列表头上第一个节点的右指针为0,即所有列都被删除,则搜索完成
{
return true;
}
//因为要输出最优秀(最少的行)的答案,每次都要优先搜索列节点最少的列
int count = INF, c;
for(int i=R[];i;i=R[i]) //从第一个列开始,直到右指针指向列头,即逐列遍历
{
if(S[i] < count) //找到节点最少的列
{
count = S[i]; //count里面放最少的节点数
c = i; //把该列做标记 ,选择了该列
if( == count) //该列节点,为最少允许的情况直接算是找到了,跳出
{
break;
}
}
}
remove(c); //先将这一列中有1的格子所在的行全部删除
for(int i=D[c];i!=c;i=D[i]) //对这一列上有1的每一行进行枚举
{
for(int j=R[i];j!=i;j=R[j]) //枚举到第i行时,将改行上所有有1的列j全部删除
{
remove(C[j]); //如果行上有符合要求的列,删了。因为精确覆盖不能重复,不能选它们了
}
if(dfs(k+)) //递归层数+1,深度搜索
{
return true;
}
for(int j=L[i];j!=i;j=L[j]) //从该行最后一个节点往左遍历,第一个节点不遍历
{
resume(C[j]); //恢复之前删除的*行*
}
}
resume(c); //递归跳出,恢复之前删除的列
return false;
} int main()
{
int t;
while(~scanf("%d%d",&n,&m))
{
init();
/*
printf("L\tR\tU\tD\tC\tO\n");
for(int i=0;i<=m;i++)
{
printf("%d\t",L[i]);
printf("%d\t",R[i]);
printf("%d\t",U[i]);
printf("%d\t",D[i]);
printf("%d\t",C[i]);
printf("%d\t\n",O[i]);
}
*/
for(int i=;i<=n;++i)
{
for(int j=;j<=m;++j)
{
scanf("%d", &t);
if(t)
{
insert(i, j); //建立抽象十字链表
}
}
}
bool flag = true;
for(int i=;i<=m;++i)
{
if(S[i] == ) //如果有一列没有一个节点,直接失败
{
flag = false;
break;
}
}
if(flag && dfs()) //进入深度搜索
{
printf("Yes, I found it\n");
}
else
{
printf("It is impossible\n");
}
}
return ;
}
/*
6 7
0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1
*/


POJ_3740 Easy Finding ——精确覆盖问题,DLX模版的更多相关文章

  1. Easy Finding POJ - 3740 (DLX)

    显然这是一道dfs简单题 或许匹配也能做 然而用了dancing links 显然这也是一道模板题 好的吧 调了一上午 终于弄好了模板 Easy Finding Time Limit: 1000MS ...

  2. poj 3740 Easy Finding 精确匹配

    题目链接 dlx的第一题, 真是坎坷..... #include <iostream> #include <vector> #include <cstdio> #i ...

  3. 【转】DLX 精确覆盖 重复覆盖

    问题描述: 给定一个n*m的矩阵,有些位置为1,有些位置为0.如果G[i][j]==1则说明i行可以覆盖j列. Problem: 1)选定最少的行,使得每列有且仅有一个1. 2)选定最少的行,使得每列 ...

  4. dancing link 精确覆盖 重复覆盖 (DLX)

    申明:因为转载的没有给出转载链接,我就把他的链接附上,请尊重原创: http://www.cnblogs.com/-sunshine/p/3358922.html 如果谁知道原创链接 给一下,请尊重原 ...

  5. DLX 舞蹈链 精确覆盖 与 重复覆盖

    精确覆盖问题:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 还有重复覆盖问题 dancing links 是 一种数据结构,用来优化搜索,不算是一种算法.(双向 ...

  6. POJ 3074 Sudoku DLX精确覆盖

    DLX精确覆盖.....模版题 Sudoku Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8336   Accepted: ...

  7. HDU 3957 Street Fighter(搜索、DLX、重复覆盖+精确覆盖)

    很久以前就看到的一个经典题,一直没做,今天拿来练手.街霸 给n<=25个角色,每个角色有 1 or 2 个版本(可以理解为普通版以及爆发版),每个角色版本可以KO掉若干人. 问最少选多少个角色( ...

  8. zoj 3209.Treasure Map(DLX精确覆盖)

    直接精确覆盖 开始逐行添加超时了,换成了单点添加 #include <iostream> #include <cstring> #include <cstdio> ...

  9. zoj - 3209 - Treasure Map(精确覆盖DLX)

    题意:一个 n x m 的矩形(1 <= n, m <= 30),现给出这个矩形中 p 个(1 <= p <= 500)子矩形的左下角与右下角坐标,问最少用多少个子矩形能够恰好 ...

随机推荐

  1. Load事件

    Load事件 在 窗体完全呈现之后 被 触发 如下伪代码: void  ShowWindows { .....//显示父容器 .....//显示子容器 .....//显示控件 //至此,窗体完全呈现 ...

  2. Django进阶Model篇001 - mysql 数据库的配置

    django 默认支持sqlite.mysql.oracle.postgresql数据库,像db2和sqlserver之类的数据库需要第三方的支持,具体详见: https://docs.djangop ...

  3. Codeforces Round #250 (Div. 2)D

    给你一张无向图,每个点有一个权值,对于一条从l到r 的边权值是l到r路径上最小的点的权值,(多条路取最大的权值),然后求每两个点之间的权值和/点对数 题解:并查集维护,先从点大的边排序,然后依次加边, ...

  4. 51nod 1043 数位dp

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1043 1043 幸运号码 基准时间限制:1 秒 空间限制:131072 ...

  5. elasticsearch 2.2+ index.codec: best_compression启用压缩

    官方说法,来自https://www.elastic.co/guide/en/elasticsearch/reference/2.2/index-modules.html#_static_index_ ...

  6. opencv:图像的掩码操作

    示例代码: #include <opencv.hpp> using namespace cv; int main() { Mat src = imread("005.jpg&qu ...

  7. Linux下的目录结构

    1./ -根 每个文件和目录从根目录开始 只有root用户具有该目录下的写权限,请注意,/root是root用户的主目录,这与/.不一样. 2. /bin  -用户二进制文件 包含二进制可执行的文件 ...

  8. windows下memcached安装以及php_memcache.dll扩展

    http://kimi.it/258.html http://kimi.it/259.html https://www.cnblogs.com/elenaPeng/p/6877530.html htt ...

  9. react:reducer-creator

    function createReducer(initialState, handlers) { return function reducer(state = initialState, actio ...

  10. js 设置日期函数

    前三十天: var now = new Date(); var prev = now.setDate( now.getDate() - 30 ) vm.sDate = comm.getFormatDa ...