Description

贝西有两个又香又脆的红苹果要送给她的两个朋友。当然她可以走的C(1<=C<=200000)条“牛路”都被包含在一种常用的图中,包含了P(1<=P<=100000)个牧场,分别被标为1..P。没有“牛路”会从一个牧场又走回它自己。“牛路”是双向的,每条牛路都会被标上一个距离。最重要的是,每个牧场都可以通向另一个牧场。每条牛路都连接着两个不同的牧场P1_i和P2_i(1<=P1_i,p2_i<=P),距离为D_i。所有“牛路”的距离之和不大于2000000000。

现在,贝西要从牧场PB开始给PA_1和PA_2牧场各送一个苹果(PA_1和PA_2顺序可以调换),那么最短的距离是多少呢?当然,PB、PA_1和PA_2各不相同。

Input

第一行,5个整数,\(C,P,PB,PA1,PA2\)(含义如题所述)

接下来\(C\)行,每行三个整数\(x,y,z\)描述一条无向边。

Output

一个整数,代表最小距离.

难得遇到一个这么裸的最短路题。

貌似\(Spfa\)会被\(Hack\)?

直接写\(Dijkstra\)。

分别以\(PA1\),\(PA2\)为起点跑\(Dijkstra\)。

每次对于到达其他两个点的距离取\(min\)即可。

代码

#include<cstdio>
#include<algorithm>
#include<queue>
#include<iostream>
#define R register using namespace std; const int gz=200008; inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
} int m,n,s,a,b,ans=214748364;
int head[gz],tot,dis[gz];
bool vis[gz]; struct hop
{
int u,d;
bool operator <(const hop&a)const
{
return d>a.d;
}
}; struct cod{int u,v,w;}edge[gz<<2]; inline void add(R int x,R int y,R int z)
{
edge[++tot].u=head[x];
edge[tot].v=y;
edge[tot].w=z;
head[x]=tot;
} inline void dijkstra(R int s)
{
for(R int i=1;i<=n;i++)dis[i]=214748364,vis[i]=false;
priority_queue<hop>q;
q.push((hop){s,dis[s]=0});
while(!q.empty())
{
R int u=q.top().u;q.pop();
if(vis[u])continue;
vis[u]=true;
for(R int i=head[u];i;i=edge[i].u)
{
if(dis[edge[i].v]>dis[u]+edge[i].w)
{
dis[edge[i].v]=dis[u]+edge[i].w;
q.push((hop){edge[i].v,dis[edge[i].v]});
}
}
}
} int main()
{
in(m),in(n),in(s),in(a),in(b);
for(R int i=1,x,y,z;i<=m;i++)
{
in(x),in(y),in(z);
add(x,y,z);add(y,x,z);
} dijkstra(a);
ans=min(ans,dis[b]+dis[s]);
dijkstra(b);
ans=min(ans,dis[a]+dis[s]); printf("%d",ans);
}

Dijkstra【p3003(bzoj2100)】[USACO10DEC]苹果交货Apple Delivery的更多相关文章

  1. 洛谷——P3003 [USACO10DEC]苹果交货Apple Delivery

    P3003 [USACO10DEC]苹果交货Apple Delivery 这题没什么可说的,跑两遍单源最短路就好了 $Spfa$过不了,要使用堆优化的$dijkstra$ 细节:1.必须使用优先队列+ ...

  2. 洛谷P3003 [USACO10DEC]苹果交货Apple Delivery

    P3003 [USACO10DEC]苹果交货Apple Delivery 题目描述 Bessie has two crisp red apples to deliver to two of her f ...

  3. 洛谷 P3003 [USACO10DEC]苹果交货Apple Delivery

    洛谷 P3003 [USACO10DEC]苹果交货Apple Delivery 题目描述 Bessie has two crisp red apples to deliver to two of he ...

  4. P3003 [USACO10DEC]苹果交货Apple Delivery

    题目描述 Bessie has two crisp red apples to deliver to two of her friends in the herd. Of course, she tr ...

  5. luoguP3003 [USACO10DEC]苹果交货Apple Delivery

    LOL新英雄卡莎点击就送 一句话题意: 三个点a1,a2,b,求从b到a1和a2的最短路 做法:求出a1->b和a2->b的最短路,两者取min,之后再加上a1->a2的最短路 为啥 ...

  6. 洛谷P3003 苹果交货Apple Delivery

    题目描述 贝西有两个又香又脆的红苹果要送给她的两个朋友.当然她可以走的\(C(1 \leq C \leq 200000)\)条"牛路"都被包含在一种常用的图中,包含了\(P(1 \ ...

  7. 【bzoj2100】[Usaco2010 Dec]Apple Delivery 最短路

    题目描述 Bessie has two crisp red apples to deliver to two of her friends in the herd. Of course, she tr ...

  8. USACO Apple Delivery

    洛谷 P3003 [USACO10DEC]苹果交货Apple Delivery 洛谷传送门 JDOJ 2717: USACO 2010 Dec Silver 1.Apple Delivery JDOJ ...

  9. BZOJ 2100: [Usaco2010 Dec]Apple Delivery( 最短路 )

    跑两遍最短路就好了.. 话说这翻译2333 ---------------------------------------------------------------------- #includ ...

随机推荐

  1. Java-Eclipse-Jabref一条龙

    Java部分: 1. 到Oracle官网下载需要版本的JDK:http://www.oracle.com/technetwork/java/javase/archive-139210.html 2. ...

  2. 洛谷 P2893 [USACO08FEB]修路Making the Grade 解题报告

    P2893 [USACO08FEB]修路Making the Grade 题目描述 A straight dirt road connects two fields on FJ's farm, but ...

  3. sqlserver数据库迁移

    本篇我们将利用DMA一步一步实现SQL Server 的迁移.帮助大家理解现在的SQL Server与新版本的融合问题,同时需要我们做哪些操作来实现新版本的升级或者迁移. SQL Server 迁移 ...

  4. 【NOIP 模拟赛】区间第K大(kth) 乱搞

    biubiu~~~ 这道题就是预处理,我们就是枚举每一个数,找到左边比他大的数的个数以及其对应的区间,右边也如此,我们把左边的和右边的相乘就得到了我们的答案,我们发现这是O(n^3)的,但是实际证明他 ...

  5. ViBe(Visual Background extractor)背景建模或前景检测

    ViBe算法:ViBe - a powerful technique for background detection and subtraction in video sequences 算法官网: ...

  6. Bash script: report largest InnoDB files

    The following script will report the largest InnoDB tables under the data directory: schema, table & ...

  7. 第116讲 boost::algorithm::string之替换和删除

    http://www.360doc.com/content/16/0523/18/29304643_561672752.shtml

  8. [hdu 4348]区间修改区间查询可持久化线段树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4348 一开始把lazy标记给push_down了,后来发现这样会让持久化变乱,然后想到不用push_d ...

  9. VC++中编译C出错:error C2143: syntax error : missing ';' before 'type'

    转摘自:http://preceo.blog.51cto.com/6225017/1130931 近来写程序时发现了一个问题,用 VC 编译 C语言是 总是提示一个错误:error C2143: sy ...

  10. javascript中的递增递减操作符

    javascript中递增递减属于一元操作符,所谓一元操作符,即只能操作一个值的操作符. 递增和递减操作符各有两个版本:前置型和后置型.顾名思义,前置型应该位于要操作的变量之前,而后置型应该位于要操作 ...