Pandas统计计算和描述
Pandas统计计算和描述
示例代码:
import numpy as np
import pandas as pd df_obj = pd.DataFrame(np.random.randn(5,4), columns = ['a', 'b', 'c', 'd'])
print(df_obj)
运行结果:
a b c d
0 1.469682 1.948965 1.373124 -0.564129
1 -1.466670 -0.494591 0.467787 -2.007771
2 1.368750 0.532142 0.487862 -1.130825
3 -0.758540 -0.479684 1.239135 1.073077
4 -0.007470 0.997034 2.669219 0.742070
常用的统计计算
sum, mean, max, min…
axis=0 按列统计,axis=1按行统计
skipna 排除缺失值, 默认为True
示例代码:
df_obj.sum() df_obj.max() df_obj.min(axis=1, skipna=False)
运行结果:
a 0.605751
b 2.503866
c 6.237127
d -1.887578
dtype: float64 a 1.469682
b 1.948965
c 2.669219
d 1.073077
dtype: float64 0 -0.564129
1 -2.007771
2 -1.130825
3 -0.758540
4 -0.007470
dtype: float64
常用的统计描述
describe 产生多个统计数据
示例代码:
print(df_obj.describe())
运行结果:
a b c d
count 5.000000 5.000000 5.000000 5.000000
mean 0.180305 0.106488 0.244978 0.178046
std 0.641945 0.454340 1.064356 1.144416
min -0.677175 -0.490278 -1.164928 -1.574556
25% -0.064069 -0.182920 -0.464013 -0.089962
50% 0.231722 0.127846 0.355859 0.190482
75% 0.318854 0.463377 1.169750 0.983663
max 1.092195 0.614413 1.328220 1.380601
常用的统计描述方法:


Pandas统计计算和描述的更多相关文章
- Pandas的函数应用、层级索引、统计计算
1.Pandas的函数应用 1.apply 和 applymap 1. 可直接使用NumPy的函数 示例代码: # Numpy ufunc 函数 df = pd.DataFrame(np.random ...
- 统计计算与R语言的资料汇总(截止2016年12月)
本文在Creative Commons许可证下发布. 在fedora Linux上断断续续使用R语言过了9年后,发现R语言在国内用的人逐渐多了起来.由于工作原因,直到今年暑假一个赴京工作的机会与一位统 ...
- sql: T-SQL 统计计算(父子關係,樹形,分級分類的統計)
---sql: T-SQL 统计计算(父子關係,樹形,分級分類的統計) ---2014-08-26 塗聚文(Geovin Du) CREATE PROCEDURE proc_Select_BookKi ...
- 闰平年简介及计算过程描述 - Java代码实现
import java.util.Scanner; /** * @author Shelwin Wei * 分析过程请参照<闰平年简介及计算过程描述>,网址 http://www.cnbl ...
- Python基础-使用range创建数字列表以及简单的统计计算和列表解析
1.使用函数 range() numbers = list(range[1,6]) print (numbers) 结果: [1,2,3,4,5] 使用range函数,还可以指定步长,例如,打印1~1 ...
- CyclicBarrier开启多个线程进行计算,最后统计计算结果
有一个大小为50000的数组,要求开启5个线程分别计算10000个元素的和,然后累加得到总和 /** * 开启5个线程进行计算,最后所有的线程都计算完了再统计计算结果 */ public class ...
- 使用if else if else 统计计算
package review20140419;/* * 统计一个班级的成绩,并统计优良中差和不及格同学个数以及求平均分 */public class Test2 { //程序的入口 pub ...
- 智能ERP收银统计-优惠统计计算规则
1.报表统计->收银统计->优惠统计规则 第三方平台优惠:(堂食订单:支付宝口碑券优惠)+(外卖订单:商家承担优惠) 自平台优惠:(堂食订单:商家后台优 ...
- MongoDB 中聚合统计计算--$SUM表达式
我们一般通过表达式$sum来计算总和.因为MongoDB的文档有数组字段,所以可以简单的将计算总和分成两种:1,统计符合条件的所有文档的某个字段的总和:2,统计每个文档的数组字段里面的各个数据值的和. ...
随机推荐
- zzuli 2172 队列优化dp
2172: GJJ的日常之购物 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 9 Solved: 8 SubmitStatusWeb Board De ...
- main函数的一点知识
main函数参数意义. main函数执行前. main还是执行后.
- Makefile的补充学习2
Makefile中使用通配符(1)* 若干个任意字符(2)? 1个任意字符(3)[] 将[]中的字符依次去和外面的结合匹配 还有个%,也是通配符,表示任意多个字符,和*很相似,但是%一般只用于规则描述 ...
- Spring 在xml配置里配置事务
事先准备:配置数据源对象用<bean>实例化各个业务对象. 1.配置事务管理器. <bean id="transactionManager" class=&quo ...
- Hibernate 悲观锁,乐观锁
业务逻辑的实现过程中,往往需要保证数据访问的排他性.因此,我们就需要通过一些机制来保证这些数据在某个操作过程中不会被外界修改,这样的机制,在这里,也就是所谓的“锁”,即给我们选定的目标数据上锁,使其无 ...
- 《模式 工程化实现及扩展 (设计模式 C#版)》 - 书摘精要
(P3) 面向对象的典型原则可以划分为两类 —— “面向类”的和“面向包”的: “面向类”的,包括:SRP —— 单一职责原则:OCP —— 开放封闭原则:LSP —— 里氏替换原则:DIP —— 依 ...
- 【python】使用asyncore进行异步通信
参考博文:http://blog.csdn.net/livefun/article/details/8721772 参考博文:https://www.cnblogs.com/tomato0906/ar ...
- 【eclipse新增系列】eclipse新安装设计编码统一
- 转载 eclipse中的include设置
备注:在10.1版的niosii使用的eclipse中设置的方法是右键->properties->c/c++general->path and symbols->include ...
- C#枚举Enum[轉]
枚举是一个指定的常数,其基础类型可以是除 Char 外的任何整型.如果没有显式声明基础类型,则使用 Int32.编程语言通常提供语法来声明由一组已命名的常数和它们的值组成的枚举.定义默认基数从O开始, ...
