设计思想

  • 分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析;
  • 在大数据系统中作用:为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务
  • 重点概念:文件切块,副本存放,元数据

HDSF的重要特性

首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件

 其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;

重要特性如下:

(1)HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M

(2)HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data

(3)目录结构及文件分块信息(元数据)的管理由namenode节点承担

——namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)

(4)文件的各个block的存储管理由datanode节点承担

---- datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)

(5)HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改

(注:适合用来做数据分析,并不适合用来做网盘应用,因为,不便修改,延迟大,网络开销大,成本太高)

HDFS基本操作

HDFS提供shell命令行客户端,使用方法如下:

hadoop    fs -ls /

HDFS客户端支持的命令参数

[-appendToFile <localsrc> ... <dst>]

[-cat [-ignoreCrc] <src> ...]

[-checksum <src> ...]

[-chgrp [-R] GROUP PATH...]

[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]

[-chown [-R] [OWNER][:[GROUP]] PATH...]

[-copyFromLocal [-f] [-p] <localsrc> ... <dst>]

[-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

[-count [-q] <path> ...]

[-cp [-f] [-p] <src> ... <dst>]

[-createSnapshot <snapshotDir> [<snapshotName>]]

[-deleteSnapshot <snapshotDir> <snapshotName>]

[-df [-h] [<path> ...]]

[-du [-s] [-h] <path> ...]

[-expunge]

[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

[-getfacl [-R] <path>]

[-getmerge [-nl] <src> <localdst>]

[-help [cmd ...]]

[-ls [-d] [-h] [-R] [<path> ...]]

[-mkdir [-p] <path> ...]

[-moveFromLocal <localsrc> ... <dst>]

[-moveToLocal <src> <localdst>]

[-mv <src> ... <dst>]

[-put [-f] [-p] <localsrc> ... <dst>]

[-renameSnapshot <snapshotDir> <oldName> <newName>]

[-rm [-f] [-r|-R] [-skipTrash] <src> ...]

[-rmdir [--ignore-fail-on-non-empty] <dir> ...]

[-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]

[-setrep [-R] [-w] <rep> <path> ...]

[-stat [format] <path> ...]

[-tail [-f] <file>]

[-test -[defsz] <path>]

[-text [-ignoreCrc] <src> ...]

[-touchz <path> ...]

[-usage [cmd ...]]

常用命令参数介绍

-help

功能:输出这个命令参数手册

-ls                  

功能:显示目录信息

示例: hadoop fs -ls hdfs://hadoop-server01:9000/

备注:这些参数中,所有的hdfs路径都可以简写

-->hadoop fs -ls /   等同于上一条命令的效果

-mkdir              

功能:在hdfs上创建目录

示例:hadoop fs  -mkdir  -p  /aaa/bbb/cc/dd

-moveFromLocal            

功能:从本地剪切粘贴到hdfs

示例:hadoop  fs  - moveFromLocal  /home/hadoop/a.txt  /aaa/bbb/cc/dd

-moveToLocal              

功能:从hdfs剪切粘贴到本地

示例:hadoop  fs  - moveToLocal   /aaa/bbb/cc/dd  /home/hadoop/a.txt

--appendToFile  

功能:追加一个文件到已经存在的文件末尾

示例:hadoop  fs  -appendToFile  ./hello.txt  hdfs://hadoop-server01:9000/hello.txt

可以简写为:

Hadoop  fs  -appendToFile  ./hello.txt  /hello.txt

-cat  

功能:显示文件内容  

示例:hadoop fs -cat  /hello.txt

-tail                 

功能:显示一个文件的末尾

示例:hadoop  fs  -tail  /weblog/access_log.1

-text                  

功能:以字符形式打印一个文件的内容

示例:hadoop  fs  -text  /weblog/access_log.1

-chgrp

-chmod

-chown

功能:linux文件系统中的用法一样,对文件所属权限

示例:

hadoop  fs  -chmod  666  /hello.txt

hadoop  fs  -chown  someuser:somegrp   /hello.txt

-copyFromLocal    

功能:从本地文件系统中拷贝文件到hdfs路径去

示例:hadoop  fs  -copyFromLocal  ./jdk.tar.gz  /aaa/

-copyToLocal      

功能:从hdfs拷贝到本地

示例:hadoop fs -copyToLocal /aaa/jdk.tar.gz

-cp              

功能:从hdfs的一个路径拷贝hdfs的另一个路径

示例: hadoop  fs  -cp  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

-mv                     

功能:在hdfs目录中移动文件

示例: hadoop  fs  -mv  /aaa/jdk.tar.gz  /

-get              

功能:等同于copyToLocal,就是从hdfs下载文件到本地

示例:hadoop fs -get  /aaa/jdk.tar.gz

-getmerge             

功能:合并下载多个文件

示例:比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,...

hadoop fs -getmerge /aaa/log.* ./log.sum

-put                

功能:等同于copyFromLocal

示例:hadoop  fs  -put  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

-rm                

功能:删除文件或文件夹

示例:hadoop fs -rm -r /aaa/bbb/

-rmdir                 

功能:删除空目录

示例:hadoop  fs  -rmdir   /aaa/bbb/ccc

-df               

功能:统计文件系统的可用空间信息

示例:hadoop  fs  -df  -h  /

-du

功能:统计文件夹的大小信息

示例:

hadoop  fs  -du  -s  -h /aaa/*

-count         

功能:统计一个指定目录下的文件节点数量

示例:hadoop fs -count /aaa/

-setrep                

功能:设置hdfs中文件的副本数量

示例:hadoop fs -setrep 3 /aaa/jdk.tar.gz

HDFS的工作原理

概要

1. HDFS集群分为两大角色:NameNode、DataNode  (Secondary Namenode)

2. NameNode负责管理整个文件系统的元数据

3. DataNode 负责管理用户的文件数据块

4. 文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上

5. 每一个文件块可以有多个副本,并存放在不同的datanode上

6. Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量

7. HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行

HDFS写数据流程

客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,

并由接收到block的datanode负责向其他datanode复制block的副本

详细步骤解析

1、根namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在

2、namenode返回是否可以上传

3、client请求第一个 block该传输到哪些datanode服务器上

4、namenode返回3个datanode服务器ABC

5、client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端

6、client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答

7、当一个block传输完成之后,client再次请求namenode上传第二个block的服务器。

HDFS读数据流程

客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,

客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件

1、跟namenode通信查询元数据,找到文件块所在的datanode服务器

2、挑选一台datanode(就近原则,然后随机)服务器,请求建立socket流

3、datanode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)

4、客户端以packet为单位接收,现在本地缓存,然后写入目标文件

 NAMENODE工作机制

问题场景:

1、集群启动后,可以查看文件,但是上传文件时报错,打开web页面可看到namenode正处于safemode状态,怎么处理?

2、Namenode服务器的磁盘故障导致namenode宕机,如何挽救集群及数据?

3、Namenode是否可以有多个?namenode内存要配置多大?namenode跟集群数据存储能力有关系吗?

4、文件的blocksize究竟调大好还是调小好?

……

诸如此类问题的回答,都需要基于对namenode自身的工作原理的深刻理解

NAMENODE职责:

负责客户端请求的响应

元数据的管理(查询,修改)

 元数据管理

namenode对数据的管理采用了三种存储形式:

内存元数据(NameSystem)

磁盘元数据镜像文件

数据操作日志文件(可通过日志运算出元数据)

元数据存储机制

A、内存中有一份完整的元数据(内存meta data)

B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)

C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件注:当客户端对hdfs中的文件进行新增或者修改操作,操作记录首先被记入edits日志文件中,当客户端操作成功后,相应的元数据会更新到内存meta.data中

元数据的checkpoint

每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)

checkpoint操作的触发条件配置参数

dfs.namenode.checkpoint.check.period=60  #检查触发条件是否满足的频率,60秒

dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary

#以上两个参数做checkpoint操作时,secondary namenode的本地工作目录

dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir}

dfs.namenode.checkpoint.max-retries=3  #最大重试次数

dfs.namenode.checkpoint.period=3600  #两次checkpoint之间的时间间隔3600秒

dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录

checkpoint的附带作用

namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,

可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据

元数据目录说明

在第一次部署好Hadoop集群的时候,我们需要在NameNode(NN)节点上格式化磁盘:

$HADOOP_HOME/bin/hdfs namenode -format

格式化完成之后,将会在$dfs.namenode.name.dir/current目录下如下的文件结构

current/

|-- VERSION

|-- edits_*

|-- fsimage_0000000000008547077

|-- fsimage_0000000000008547077.md5

`-- seen_txid

其中的dfs.name.dir是在hdfs-site.xml文件中配置的,默认值如下:

<property>

<name>dfs.name.dir</name>

<value>file://${hadoop.tmp.dir}/dfs/name</value>

</property>

hadoop.tmp.dir是在core-site.xml中配置的,默认值如下

<property>

<name>hadoop.tmp.dir</name>

<value>/tmp/hadoop-${user.name}</value>

<description>A base for other temporary directories.</description>

</property>

dfs.namenode.name.dir属性可以配置多个目录,

如/data1/dfs/name,/data2/dfs/name,/data3/dfs/name,....。各个目录存储的文件结构和内容都完全一样,相当于备份,这样做的好处是当其中一个目录损坏了,也不会影响到Hadoop的元数据,特别是当其中一个目录是NFS(网络文件系统Network File System,NFS)之上,即使你这台机器损坏了,元数据也得到保存。
下面对$dfs.namenode.name.dir/current/目录下的文件进行解释。
1、VERSION文件是Java属性文件,内容大致如下:

#Fri Nov 15 19:47:46 CST 2013

namespaceID=934548976

clusterID=CID-cdff7d73-93cd-4783-9399-0a22e6dce196

cTime=0

storageType=NAME_NODE

blockpoolID=BP-893790215-192.168.24.72-1383809616115

layoutVersion=-47

其中
  (1)、namespaceID是文件系统的唯一标识符,在文件系统首次格式化之后生成的;
  (2)、storageType说明这个文件存储的是什么进程的数据结构信息(如果是DataNode,storageType=DATA_NODE);
  (3)、cTime表示NameNode存储时间的创建时间,由于我的NameNode没有更新过,所以这里的记录值为0,以后对NameNode升级之后,cTime将会记录更新时间戳;
  (4)、layoutVersion表示HDFS永久性数据结构的版本信息, 只要数据结构变更,版本号也要递减,此时的HDFS也需要升级,否则磁盘仍旧是使用旧版本的数据结构,这会导致新版本的NameNode无法使用;
  (5)、clusterID是系统生成或手动指定的集群ID,在-clusterid选项中可以使用它;如下说明

a、使用如下命令格式化一个Namenode:

$HADOOP_HOME/bin/hdfs namenode -format [-clusterId <cluster_id>]

选择一个唯一的cluster_id,并且这个cluster_id不能与环境中其他集群有冲突。如果没有提供cluster_id,则会自动生成一个唯一的ClusterID。

b、使用如下命令格式化其他Namenode:

$HADOOP_HOME/bin/hdfs namenode -format -clusterId <cluster_id>

c、升级集群至最新版本。在升级过程中需要提供一个ClusterID,例如:

$HADOOP_PREFIX_HOME/bin/hdfs start namenode --config $HADOOP_CONF_DIR  -upgrade -clusterId <cluster_ID>

如果没有提供ClusterID,则会自动生成一个ClusterID。

  (6)、blockpoolID:是针对每一个Namespace所对应的blockpool的ID,上面的这个BP-893790215-192.168.24.72-1383809616115就是在我的ns1的namespace下的存储块池的ID,这个ID包括了其对应的NameNode节点的ip地址。
  
2、$dfs.namenode.name.dir/current/seen_txid非常重要,是存放transactionId的文件,format之后是0,它代表的是namenode里面的edits_*文件的尾数,namenode重启的时候,会按照seen_txid的数字,循序从头跑edits_0000001~到seen_txid的数字。所以当你的hdfs发生异常重启的时候,一定要比对seen_txid内的数字是不是你edits最后的尾数,不然会发生建置namenode时metaData的资料有缺少,导致误删Datanode上多余Block的资讯。

3、$dfs.namenode.name.dir/current目录下在format的同时也会生成fsimage和edits文件,及其对应的md5校验文件。

补充:seen_txid

文件中记录的是edits滚动的序号,每次重启namenode时,namenode就知道要将哪些edits进行加载edits

DATANODE的工作机制

问题场景:

1、集群容量不够,怎么扩容?

2、如果有一些datanode宕机,该怎么办?

3、datanode明明已启动,但是集群中的可用datanode列表中就是没有,怎么办?

以上这类问题的解答,有赖于对datanode工作机制的深刻理解

Datanode工作职责:

存储管理用户的文件块数据

定期向namenode汇报自身所持有的block信息(通过心跳信息上报)

(这点很重要,因为,当集群中发生某些block副本失效时,集群如何恢复block初始副本数量的问题)

<property>

<name>dfs.blockreport.intervalMsec</name>

<value>3600000</value>

<description>Determines block reporting interval in milliseconds.</description>

</property>

2、Datanode掉线判断时限参数

datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:

timeout  = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval。

而默认的heartbeat.recheck.interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。

需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。

<property>

<name>heartbeat.recheck.interval</name>

<value>2000</value>

</property>

<property>

<name>dfs.heartbeat.interval</name>

<value>1</value>

</property>

观察验证DATANODE功能

上传一个文件,观察文件的block具体的物理存放情况:

在每一台datanode机器上的这个目录中能找到文件的切块:

/home/hadoop/app/hadoop-2.4.1/tmp/dfs/data/current/BP-193442119-192.168.2.120-1432457733977/current/finalized

HDFS的介绍的更多相关文章

  1. HDFS Federation(转HDFS Federation(HDFS 联盟)介绍 CSDN)

    转载地址:http://blog.csdn.net/strongerbit/article/details/7013221 HDFS Federation(HDFS 联盟)介绍 1. 当前HDFS架构 ...

  2. HDFS简单介绍及用C语言訪问HDFS接口操作实践

    一.概述 近年来,大数据技术如火如荼,怎样存储海量数据也成了当今的热点和难点问题,而HDFS分布式文件系统作为Hadoop项目的分布式存储基础,也为HBASE提供数据持久化功能,它在大数据项目中有很广 ...

  3. 【Hadoop离线基础总结】HDFS详细介绍

    HDFS详细介绍 分布式文件系统设计思路 概述 只有一台机器时的文件查找:hello.txt /export/servers/hello.txt 如果有多台机器时的文件查找:hello.txt nod ...

  4. 【Hadoop离线基础总结】HDFS入门介绍

    HDFS入门介绍 概述 HDFS全称为Hadoop Distribute File System,也就是Hadoop分布式文件系统,是Hadoop的核心组件之一. 分布式文件系统是横跨在多台计算机上的 ...

  5. HDFS原理介绍

    HDFS(Hadoop Distributed File System )Hadoop分布式文件系统.是根据google发表的论文翻版的.论文为GFS(Google File System)Googl ...

  6. 【转】HADOOP HDFS BALANCER介绍及经验总结

    转自:http://www.aboutyun.com/thread-7354-1-1.html 集群平衡介绍 Hadoop的HDFS集群非常容易出现机器与机器之间磁盘利用率不平衡的情况,比如集群中添加 ...

  7. HADOOP HDFS BALANCER介绍及经验总结(转)

    1.集群执行balancer命令,依旧不平衡的原因是什么?该如何解决? 2.尽量不在NameNode上执行start-balancer.sh的原因是什么? 集群平衡介绍 Hadoop的HDFS集群非常 ...

  8. Hadoop自学笔记(二)HDFS简单介绍

    1. HDFS Architecture 一种Master-Slave结构.包括Name Node, Secondary Name Node,Data Node Job Tracker, Task T ...

  9. hdfs 安全模式介绍

    1. hdfs在启动的时候现将映像载入内存,并执行edits中的各项操作,一旦在内存中建立元数据的映像,则闯进啊一个新的fsimage文件和空的编辑日志.此时namenode开始监听datanode请 ...

随机推荐

  1. ionic2常见问题——修改应用图标及添加启动画面(官方命令行工具自动生成)

    1.项目根目录->resources 分别存放应用图标及添加启动画面,替换成自己的图案既可. 2.这样在命令行中重新运行ionic resources ,就能看到应用图标和名字已经被替换了: 3 ...

  2. 剑指offer--30.二叉搜索树的后序遍历序列

    正常情况下,因为二叉搜索树,左子树所有结点比根小,右子树所有结点比根大,所以循环一遍就能结束 ----------------------------------------------------- ...

  3. PostgreSQL流复制记录

    参考了别人的部分,添加了自己在实践中的内容,仅做记录. 1.同步流复制中 主机操作 1.1postgresql.conf wal_level = hot_standby # 这个是设置主为wal的主机 ...

  4. Ganymed实现基本的自动化部署API

    Ganymed SSH-2 for Java是一个纯Java实现的SHH2库,官网为http://www.ganymed.ethz.ch/ssh2/,最新的更新时间为2006年10月,在用之前,请仔细 ...

  5. Js事件处理模型/周期

    有3个阶段 1.  捕获阶段:由外向内,记录各级父元素上绑定的事件处理函数---只记录,不触发. 2.  目标触发:优先触发目标元素上的事件处理函数. 3.  冒泡:由内向外,按捕获的顺序的相反的方向 ...

  6. eclipse 智能提示js和jquery等前端插件

    使用Eclipse写Jquery和Javascript代码的时候,是没有智能提示的.我们可以使用一个插件来解决这个问题. 安装完成后,Eclipse会自动重启.重启之后,我们在项目上右键,   根据自 ...

  7. vc++6 Platform SDK February 2003

    vc++6.0 sp6 ftp://ejiasoft:softejia@ejia2.tust.edu.cn/else/VC++.6.0.with.SP6.ISO MSDN http://ftp.sds ...

  8. cowboy实现websocket

    使用cowboy实现websocket主要实现以下回调函数 下面的函数返回值要具体弄清楚原因参考 websocket具体协议  主要就是两个部分 握手和数据传输 -export([init/3]).  ...

  9. 一种 jquery 检索方案

    整理自:http://www.cnblogs.com/linjiqin/archive/2011/03/18/1988464.html <!DOCTYPE HTML PUBLIC "- ...

  10. WCF OpenTimeout, CloseTimeout, SendTimeout, ReceiveTimeout

    1.OpenTimeout 客户端与服务端建立连接时,如果超过指定时间都还没完成,就引发TimeoutException. 在TCP通讯中,服务器必须首先准备好侦听端口并在该端口上侦听(Listen) ...