分析:

给一个序列,求出每个位置结尾的最长上升子序列

O(n^2) 超时

#include "cstdio"
#include "algorithm"
#define N 1005
#define INF 0X3f3f3f3f
using namespace std;
int a[N];
int dp[N];
void solve(int n)
{
for(int i=;i<n;i++)
{
dp[i]=;
for(int j=;j<i;j++)///往前找寻美妙的回忆
{
if(a[j]<a[i])
{
dp[i]=std::max(dp[i],dp[j]+);
}
}
}
for(int i=;i<n;i++)
{
if(i==)
printf("%d",dp[]);
else
printf(" %d",dp[i]);
}
printf("\n");
} int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",&a[i]);
solve(n);
}
}

优化为O(nlogn)  AC

#include "cstdio"
#define N 100005
#include "algorithm"
using namespace std;
int n;
int a[N];
int dp[N];
int ans[N];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&a[]);
int top=;///最长上升子序列长度
dp[]=a[];///=最后一个元素
ans[]=top;///每个位置的 最长上升..长度 for(int j=;j<n;j++)///对每个元素
{
scanf("%d",&a[j]);
if(a[j]>dp[top])///变长
{
top++;
dp[top]=a[j];
ans[j]=top;
}
else
{
int pos=lower_bound(dp,dp+top,a[j])-dp;///二分查找位置 替换元素
dp[pos]=a[j];
ans[j]=pos;
}
}
for(int i=;i<n;i++)
{
if(i==)
printf("%d",ans[i]);
else
printf(" %d",ans[i]);
}
printf("\n");
}
}

若只要最长...,只输出ans[n-1]

可将上述解法当做一模板

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
int dp[];
const int inf=0x7fffffff;
int a[]={,,,,,,};
const int maxn=;
int main()
{
fill(dp,dp+,inf);
for(int i=;i<;i++)
{
*lower_bound(dp,dp+,a[i])=a[i];
}
int len=lower_bound(dp,dp+,inf)-dp;
for(int i=;i<len;i++)
cout<<dp[i]<<endl;
return ;
}

HDU5748---(记录每个元素的 最长上升子序列 nlogn)的更多相关文章

  1. HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...

  2. 【算法】最长公共子序列(nlogn)

    转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复 ...

  3. 最长公共子序列 nlogn

    先来个板子 #include<bits/stdc++.h> using namespace std; , M = 1e6+, mod = 1e9+, inf = 1e9+; typedef ...

  4. [poj 1533]最长上升子序列nlogn树状数组

    题目链接:http://poj.org/problem?id=2533 其实这个题的数据范围n^2都可以过,只是为了练习一下nlogn的写法. 最长上升子序列的nlogn写法有两种,一种是变形的dp, ...

  5. DP练习 最长上升子序列nlogn解法

    openjudge 百练 2757:最长上升子序列 总时间限制:  2000ms 内存限制:  65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候, ...

  6. NYOJ 214 最长上升子序列nlogn

    普通的思路是O(n2)的复杂度,这个题的数据量太大,超时,这时候就得用nlogn的复杂度的算法来做,这个算法的主要思想是只保存有效的序列,即最大递增子序列,然后最后得到数组的长度就是最大子序列.比如序 ...

  7. hdu1950 最长上升子序列nlogn

    简单. #include<cstdio> #include<cstring> #include<iostream> using namespace std; ; i ...

  8. hdu1025 最长上升子序列 (nlogn)

    水,坑. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm&g ...

  9. 最长上升子序列 nlogn

    ; LL num[N]; LL dp[N]; LL go(LL l, LL r, LL k) { for (; r >= l; r--) if (dp[r] <= k) return r; ...

随机推荐

  1. Android开发——View动画、帧动画和属性动画详解

    0. 前言   Android动画是面试的时候经常被问到的话题.我们都知道Android动画分为三类:View动画.帧动画和属性动画. 先对这三种动画做一个概述: View动画是一种渐进式动画,通过图 ...

  2. CSS3实现加载数据动画2

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. 一步一步学Linq to sql(四):查询句法

    select 描述:查询顾客的公司名.地址信息 查询句法: var 构建匿名类型1 = from c in ctx.Customers select new { 公司名 = c.CompanyName ...

  4. Android Stadio调试gradle 插件 || Android Stadio 远程调试 || Anroid APT调试

    有时候,自己开发了gralde插件,想调试一下.毕竟打印log 成本太高.效率太低.怎么做呢? 第一种方法: 1.执行gradlew 命令的时候,加上几个参数:-Dorg.gradle.debug=t ...

  5. 用Kettle的一套流程完成对整个数据库迁移 费元星

    原地址 :http://ainidehsj.iteye.com/blog/1735434 需求: 1.你是否遇到了需要将mysql数据库中的所有表与数据迁移到Oracle. 2.你是否还在使用kett ...

  6. java使用java.util.Properties读取properties文件的九种方法

    直接上代码: package com.test.test; import java.io.BufferedInputStream; import java.io.FileInputStream; im ...

  7. Linux初步——常用简单命令

    散乱的记录,目前是边学边用,以后有机会再整理 curl命令 发起一个HTTP请求,如:curl "http://www.baidu.com" 加上-I选项查看HTTP协议头的信息, ...

  8. 九度OJ--Q1167

    import java.util.Scanner;import java.util.TreeSet; /* * 题目描述: * 输入一个数组的值,求出各个值从小到大排序后的次序. * 输入: * 输入 ...

  9. iOS-显示日期的转换,今天,昨天,前天

    + (NSString *)stringWithDate:(NSDate *)date{ // 1.获得年月日 NSCalendar *calendar = [NSCalendar currentCa ...

  10. IDEA里面添加lombok插件,编写简略风格Java代码

    在 java平台上,lombok 提供了简单的注解的形式来帮助我们消除一些必须有但看起来很臃肿的代码, 比如属性的get/set,及对象的toString等方法,特别是相对于 POJO; 关于lomb ...