据说DAG是动态规划的基础,想一想还真的是这样的,动态规划的所有状态和转移都可以归约成DAG

DAG有两个典型模型,一个是嵌套矩形问题一个是硬币问题,这里仅介绍一个嵌套矩形问题

等二轮复习的时候再补上

NYOJ16,南阳OJ很不错的样子嘛

如果矩形X可以嵌套到矩形Y中,连有向边X->Y

求DAG的最长路径

这里起点和终点不用刻意给出,因为任意一个矩形都可以作为起点和终点

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
int n;
int a[maxn],b[maxn],d[maxn];
int G[maxn][maxn];
int dfs(int x)
{
if(d[x]>) return d[x];
d[x]=;
for(int i=;i<=n;i++)
if(G[x][i]) d[x]=max(d[x],dfs(i)+);
return d[x];
}
void print_ans(int x)
{
printf("%d ",x);
for(int i=;i<=n;i++)
if(G[x][i]&&d[x]==d[i]+)
{
print_ans(i);
break;
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
memset(d,,sizeof(d));
memset(a,,sizeof(a));
memset(b,,sizeof(b));
memset(G,,sizeof(G));
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&a[i],&b[i]);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(a[i]>a[j]&&b[i]>b[j]||a[i]>b[j]&&b[i]>a[j])
G[i][j]=;
}
int tmp=;
for(int i=;i<=n;i++)
tmp=max(tmp,dfs(i));
printf("%d\n",tmp);
} return ;
}

记忆化很舒适

动态规划:DAG-嵌套矩形的更多相关文章

  1. DAG上的动态规划之嵌套矩形

    题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...

  2. HDOJ-1069(动态规划+排序+嵌套矩形问题)

    Monkey and Banana HDOJ-1069 这里实际是嵌套矩形问题的变式,也就是求不固定起点的最长路径 动态转移方程为:dp[i]=max(dp[j]+block[i].h|(i,j)∈m ...

  3. DAG上的动态规划---嵌套矩形(模板题)

    一.DAG的介绍 Directed Acyclic Graph,简称DAG,即有向无环图,有向说明有方向,无环表示不能直接或间接的指向自己. 摘录:有向无环图的动态规划是学习动态规划的基础,很多问题都 ...

  4. CJOJ 1070 【Uva】嵌套矩形(动态规划 图论)

    CJOJ 1070 [Uva]嵌套矩形(动态规划 图论) Description 有 n 个矩形,每个矩形可以用两个整数 a, b 描述,表示它的长和宽.矩形 X(a, b) 可以嵌套在矩形 Y(c, ...

  5. NYOJ16|嵌套矩形|DP|DAG模型|记忆化搜索

    矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a& ...

  6. P1375 嵌套矩形

    题目Problem 嵌套矩形 Time Limit: 1000ms    Memory Limit: 131072KB 描述Descript. 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形 ...

  7. 嵌套矩形——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.非常多问题都能够转化为DAG上的最长路.最短路或路径计数问题. 题目描写叙述: 有n个矩形,每一个矩 ...

  8. [ACM_动态规划] 嵌套矩形

    问题描述:有n个矩阵,每个矩阵可以用两个整数a,b来表示 ,表示他的长和宽,矩阵X (a,b) 可以 嵌套 到Y (c,d) 里面当且仅当 a < c &&  b < d  ...

  9. 02_嵌套矩形(DAG最长路问题)

    来源:刘汝佳<算法竞赛入门经典--训练指南> P60 问题2: 问题描述:有n个矩形,每个矩形可以用两个整数a,b描述,表示它们的长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中的条件 ...

  10. 题解【CJOJ1070/UVA】嵌套矩形

    P1070 - [Uva]嵌套矩形 Description 有 n 个矩形,每个矩形可以用两个整数 a, b 描述,表示它的长和宽.矩形 X(a, b) 可以嵌套在矩形 Y(c, d) 中当且仅当 a ...

随机推荐

  1. C# Winform 实现屏蔽键盘的win和alt+F4的实现代码

    最近在做一个恶搞程序,就是打开后,程序获得桌面的截图然后,然后全屏显示在屏幕上,用户此时则不能进行任何操作. 此时希望用户不能通过键盘alt+F4来结束程序及通过Win的组合键对窗口进行操作.我在网上 ...

  2. vue之vue-cookies使用

    一.安装vue-cookies npm install --save vue-cookies 或者 yarn add vue-cookies 二.引入vue-cookie // 方式一:require ...

  3. 1087 All Roads Lead to Rome (30 分)(最短路径)

    直接用Dijkstra做 #include<bits/stdc++.h> using namespace std; int n,m; map<string,int>si; ma ...

  4. 【CodeForces】9B-Running Student

    目录 Question Description Input Output Solution 解法1 Question Description 小明在公交车始发站上车,他应该在哪个站点下车才能最快到达学 ...

  5. FetchType.LAZY 时属性加上@JsonIgnore,避免返回时报错:Could not write JSON: failed to lazily initialize a collection of role

    [示例] @OneToMany(fetch=FetchType.LAZY) @JsonIgnore @Fetch(FetchMode.SELECT) @Cascade(value={CascadeTy ...

  6. HDU 4565 So Easy!(数学+矩阵快速幂)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description A sequence Sn is defined as:Where a, b, n, m are positive integers.┌x┐is the cei ...

  7. ACM第一阶段学习内容

    一.知识目录 字符串处理 ................................................................. 3 1.KMP 算法 .......... ...

  8. lintcode-78-最长公共前缀

    78-最长公共前缀 给k个字符串,求出他们的最长公共前缀(LCP) 样例 在 "ABCD" "ABEF" 和 "ACEF" 中, LCP 为 ...

  9. 【转】GOOGLE-PROTOBUF与FLATBUFFERS数据的序列化和反序列化

    转载自[黑米GameDev街区] 原文链接: http://www.himigame.com/unity3d-game/1607.html  关于Protobuf 通过本文的转载和分享的相关链接,足够 ...

  10. pptp协议的工作原理

    我的工作机是A,通信网卡是Aeth0, Appp0: 然后我的云主机是B, 通信的网卡是Beth0, Bppp0: 在网卡Bppp0上会不断地很清晰的数据包: 16:40:39.522917 IP 6 ...