P3794 签到题IV
题目
P3794 签到题IV
来切道水题放松一下吧
做法
或是单调不下降的,\(gcd\)是单调不上升的
\(a_i≤5×10^5\)分成权值不同的块数应该很小,所以随便乱搞就出来了
My complete code
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL maxn=1e6;
LL t1,t2,n,k,ans;
LL a[maxn],q1[maxn],q2[maxn],num1[maxn],num2[maxn],q[maxn],num[maxn];
LL Gcd(LL x,LL y){
while(y){
LL tmp(y);
y=x%y,x=tmp;
}return x;
}
inline void Update1(LL x){
for(LL i=1;i<=t1;++i) q1[i]=Gcd(q1[i],x);
q1[++t1]=x,num1[t1]=1;
LL cnt(0);
for(LL i=1;i<=t1;++i)
if(i==1 || q1[i]!=q[cnt]) q[++cnt]=q1[i],num[cnt]=num1[i];
else num[cnt]+=num1[i];
t1=cnt;
for(LL i=1;i<=t1;++i) q1[i]=q[i],num1[i]=num[i];
}
inline void Update2(LL x){
for(LL i=1;i<=t2;++i) q2[i]|=x;
q2[++t2]=x,num2[t2]=1;
LL cnt(0);
for(LL i=1;i<=t2;++i)
if(i==1 || q2[i]!=q[cnt]) q[++cnt]=q2[i],num[cnt]=num2[i];
else num[cnt]+=num2[i];
t2=cnt;
for(LL i=1;i<=t2;++i) q2[i]=q[i],num2[i]=num[i];
}
inline void Solve(){
LL i(1),j(1),na(num1[1]),nb(num2[1]);
while(i<=t1){
LL d(min(na,nb));
if((q1[i]^q2[j])==k) ans+=d;
na-=d,nb-=d;
if(!na) na=num1[++i];
if(!nb) nb=num2[++j];
}
}
int main(){
cin>>n>>k;
for(LL i=1;i<=n;++i){
cin>>a[i];
Update1(a[i]),Update2(a[i]);
Solve();
}
cout<<ans;
return 0;
}
P3794 签到题IV的更多相关文章
- 洛谷3794:签到题IV——题解
https://www.luogu.org/problemnew/show/P3794 题目见上. 有一个套路(虽然我到现在还不会),就是固定一个端点,二分查右端点. 显然这题的正解是O(nlogn) ...
- [Luogu 3794]签到题IV
Description 题库链接 给定长度为 \(n\) 的序列 \(A\).求有多少子段 \([l,r]\) 满足 \[ \left(\gcd_{l\leq i\leq r}A_i\right) \ ...
- 洛谷3794 签到题IV
题目描述 给定一个长度为n的序列$a_1,a_2...a_n$,其中每个数都是正整数. 你需要找出有多少对(i,j),$1 \leq i \leq j \leq n$且$gcd(a_i,a_{i+1} ...
- A 洛谷 P3601 签到题 [欧拉函数 质因子分解]
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
- fjwc2019 D3T1 签到题 (贪心)
#184. 「2019冬令营提高组」签到题 每次询问接近O(1).......考虑贪心 怎么贪心呢? 对于相邻的两个数,我们要保证异或x后单调不降 我们找到两个数二进制上最高的相异位 当左边的数相异位 ...
- CTF-练习平台-WEB之 签到题
一.签到题 根据提示直接加群在群公告里就能找到~
- 洛谷P3601签到题(欧拉函数)
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
- 【洛谷九月月赛T1】签到题(bsgs)(快速乘)
说好的签到题呢qwq....怎么我签到题都不会啊qwq 之后看了bsgs才发现貌似不是那么那么难fake!!什么东西... 先贴上部分分做法(也就是枚举1的个数,然后每一步都进行取模(这和最后取模结果 ...
- WEB新手之签到题
写一写web新手赛的题. 这是签到题,开始时需要耐心等待页面中字母全部出现. 字母全部出现后,会跳转到另一个界面,如上图所示.F12没什么特别的地方,这题应该有点难度. 按往常一样,先抓包. 按英文提 ...
随机推荐
- java 窗体
import javax.swing.*; /** * 一个简单的java窗体例子 */ public class Test { public static void main(String[] ar ...
- What is special about /dev/tty?
ls -la /dev/tty shows the output: crw-rw-rw- 1 root tty 5, 0 Dec 14 22:21 /dev/tty The 'c' means it' ...
- php生成rss订阅
代码: <?php $host = $_SERVER['HTTP_HOST']; $xmls = '<?xml version="1.0" encoding=" ...
- MFC 资源记录
MFC的RC文件中,定义很多中资源,每种资源具体是如何定义的,资源文件中各种符号都是什么意义? LTEXT "A&xis:",IDC_STATIC,12 ...
- 继续聊WPF——动态数据模板
我为啥称之为“动态数据模板”?先看看下面的截图,今天,我们就是要实现这种功能. 大概是这样的,我们定义的DataTemplate是通过触发器动态应用到 ComboBoxItem 上. 这个下拉列表控件 ...
- poj 2513(欧拉路径+字典树映射)
题目链接:http://poj.org/problem?id=2513 思路:题目还是很简单的,就是判断是否存在欧拉路径,我们给每个单词的头和尾映射序号,统计度数.对于给定的无向图,当且仅当图连通并且 ...
- eclipse 4.3 汉化
打开浏览器,浏览“参考资料”内给出的“eclipse语言包下载”地址,在博客新页面找到地址链接,如图所示.“Babel Language...”开头的一栏下面就是各个eclise版本的语言包,此处以I ...
- Oracle注入速查表
注:下面的一部分查询只能由admin执行,我会在查询的末尾以"-priv“标注. 探测版本: SELECT banner FROM v$version WHERE banner LIKE ‘ ...
- CodeIgniter框架——知识要点汇总
NO1.学习要点: 一.CodeIgniter 框架的简介 二.CodeIgniter 框架的安装 三.CodeIgniter 框架的目录结构分析 四.CodeIgniter 框架是如何工作的? 五. ...
- SpringBoot整合Dubbo报错: java.lang.ClassCastException
com.alibaba.dubbo.rpc.RpcException: Failed to invoke remote proxy method queryGoodsLimitPage to regi ...