【LeetCode】【动态规划】Edit Distance
描述
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
思路:动态规划
这是一个经典的动态规划问题,思路参考斯坦福的课程:http://www.stanford.edu/class/cs124/lec/med.pdf
这里把加2变成加1即可
dp[i][0] = i
;dp[0][j] = j
;dp[i][j] = dp[i - 1][j - 1]
, ifword1[i - 1] = word2[j - 1]
;dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1)
, otherwise.
class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int> > dp(m+, vector<int>(n+, ));
for(int i = ;i<=m;++i)
dp[i][] = i;
for(int i = ;i<=n;++i)
dp[][i] = i;
for(int i = ;i<=m;++i){
for(int j = ;j<=n;++j){
if(word1[i-] == word2[j-])
dp[i][j] = dp[i-][j-];
else
dp[i][j] = min(dp[i-][j-], min(dp[i][j-], dp[i-][j])) + ;
}
}
return dp[m][n];
}
};
【LeetCode】【动态规划】Edit Distance的更多相关文章
- [Leetcode Week8]Edit Distance
Edit Distance 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/edit-distance/description/ Description ...
- [LeetCode] 72. Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- [LeetCode] One Edit Distance 一个编辑距离
Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...
- 【leetcode】Edit Distance
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- Java for LeetCode 072 Edit Distance【HARD】
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- LeetCode One Edit Distance
原题链接在这里:https://leetcode.com/problems/one-edit-distance/ Given two strings S and T, determine if the ...
- leetCode 72.Edit Distance (编辑距离) 解题思路和方法
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- [LeetCode] 72. Edit Distance(最短编辑距离)
传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...
- LeetCode - 72. Edit Distance
最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...
- 【leetcode】Edit Distance (hard)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
随机推荐
- openWRT自学---对官方的开发指导文档的解读和理解 记录3:一些常用方法
1.约定 configuration files follow the convention: <name>.conf init files follow the convention: ...
- You don't have permission to access javascript on this server
今天访问遇到一个很奇怪的问题,在本地测试 http://localhost:9012/javascript/, 报错: Forbidden You don't have permission to a ...
- abp 中wangEditor-angular 的使用
主要是上传图片的配置. (function () { if (typeof angular === 'undefined') { return; } angular.module('editorCon ...
- 如何修改SESSION的生存时间
php中session过期时间设置网上很多人给出了解答:修改php配置文件中的session.gc_maxlifetime.如果想了解更多session回收机制,继续阅读.(本文环境php5.2) 概 ...
- tinycore Network card configuration during exec bootlocal.sh
question: tinycore在boot时, 运行bootlocal.sh脚本,其中有局域网通信的部分,一直跑不通,测试了一下才知道是运行bootlocal.sh的阶段,网络可能没有配置好,ip ...
- 一步步学习python
python是一种功能比较强的脚本,尤其是在网络应用上,又称作:胶水语言.具体的简介可以在维基百科.百度百科等查得到他的发展史,有事一贯犹 如unix linux等老外打发无聊时间发明的强大工具,这是 ...
- Laravel 5.1 Blade模板引擎
为什么要使用blade 它是干什么用的? blade模板引擎使我们写HTML页面的地方,使用它是因为它能给我们提供很多的遍历,减少代码的重复率 提高开发效率.我们写blade的路径是 resource ...
- WPF开发简介教程
1/ VS中文件-新建-项目-WPF应用程序 2/ 左上角工具箱中有很多组件可以直接拖拽使用 3/ 双击组件,进入脚本功能编辑界面,如按钮: private void Button_Click_1(o ...
- java中InputStream转化为byte[]数组
//org.apache.commons.io.IOUtils.toByteArray已经有实现 String filePath = "D:\\aaa.txt"; in = new ...
- html5离线缓存使用
html5 离线缓存使用以及注意事项 1.index.html中加入离线缓存的声明文件 如:<!DOCTYPE html><html manifest="test.appc ...