Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法。该算法被称为是“贪心算法”的成功典范。本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码。

一、知识准备

1、表示图的数据结构

  用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵。

  图的邻接矩阵存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息。

设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为:

  

从上面可以看出,无向图的边数组是一个对称矩阵。所谓对称矩阵就是n阶矩阵的元满足aij = aji。即从矩阵的左上角到右下角的主对角线为轴,右上角的元和左下角相对应的元全都是相等的。

从这个矩阵中,很容易知道图中的信息。

(1)要判断任意两顶点是否有边无边就很容易了;

(2)要知道某个顶点的度,其实就是这个顶点vi在邻接矩阵中第i行或(第i列)的元素之和;

(3)求顶点vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[i][j]为1就是邻接点;

而有向图讲究入度和出度,顶点vi的入度为1,正好是第i列各数之和。顶点vi的出度为2,即第i行的各数之和。

  有向图的定义也类似,故不做赘述。

2、单起点全路径

    所谓单起点全路径,就是指在一个图中,从一个起点出发,到所有节点的最短路径。

3、图论的基本知识(读者需自行寻找相关资料)

4、互补松弛条件

 设标量d1,d2,....,dN满足

    dj<=di + aij,  (i,j)属于A,

 且P是以i1为起点ik为终点的路,如果

    dj = di + aij, 对P的所有边(i, j)

 成立,那么P是从i1到ik的最短路。其中,满足上面两式的被称为最短路问题的互补松弛条件。

二、算法思想

1、令G = (V,E)为一个带权无向图。G中若有两个相邻的节点,i和j。aij(在这及其后面都表示为下标,请注意)为节点i到节点j的权值,在本算法可以理解为距离。每个节点都有一个值di(节点标记)表示其从起点到它的某条路的距离。

  2、算法初始有一个数组V用于储存未访问节点的列表,我们暂称为候选列表。选定节点1为起始节点。开始时,节点1的d1=0, 其他节点di=无穷大,V为所有节点。
初始化条件后,然后开始迭代算法,直到V为空集时停止。具体迭代步骤如下:

   将d值最小的节点di从候选列表中移除。(本例中V的数据结构采用的是优先队列实现最小值出列,最好使用斐波那契对,在以前文章有过介绍,性能有大幅提示)。对于以该节点为起点的每一条边,不包括移除V的节点, (i, j)属于A, 若dj > di + aij(违反松弛条件),则令

  dj = di + aij    , (如果j已经从V中移除过,说明其最小距离已经计算出,不参与此次计算)

  可以看到在算法的运算工程中,节点的d值是单调不增的

  具体算法图解如下

  

三、代码实现

//接受一个有向图的权重矩阵,和一个起点编号start(从0编号,顶点存在数组中)
//返回一个int[] 数组,表示从start到它的最短路径长度  
public static int[] Dijsktra(int[][]weight,int start){
int length = weight.length;
int[] shortPath = new int[length];//存放从start到各个点的最短距离
shortPath[0] = 0;//start到他本身的距离最短为0
String path[] = new String[length];//存放从start点到各点的最短路径的字符串表示
for(int i=0;i<length;i++){
path[i] = start+"->"+i;
}
int visited[] = new int[length];//标记当前该顶点的最短路径是否已经求出,1表示已经求出
visited[0] = 1;//start点的最短距离已经求出
for(int count = 1;count<length;count++){
int k=-1;
int dmin = Integer.MAX_VALUE;
for(int i=0;i<length;i++){
if(visited[i]==0 && weight[start][i]<dmin){
dmin = weight[start][i];
k=i;
}
}
//选出一个距离start最近的未标记的顶点 将新选出的顶点标记为以求出最短路径,且到start的最短路径为dmin。
shortPath[k] = dmin;
visited[k] = 1;
//以k为中间点,修正从start到未访问各点的距离
for(int i=0;i<length;i++){
if(visited[i]==0 && weight[start][k]+weight[k][i]<weight[start][i]){
weight[start][i] = weight[start][k]+weight[k][i];
path[i] = path[k]+"->"+i;
}
}
}
for(int i=0;i<length;i++){
System.out.println("从"+start+"出发到"+i+"的最短路径为:"+path[i]+"="+shortPath[i]);
}
return shortPath; }

  这便是利用迪杰斯特拉算法实现最短路径的方法。

之后可以声明一个常量,例如:

static final int MAX = 10000;

然后在main方法里面建一个邻接矩阵,调用此方法即可。

public static void main(String[] args) {
int[][] weight = {
{0,3,2000,7,MAX},
{3,0,4,2,MAX},
{MAX,4,0,5,4},
{7,2,5,0,6},
{MAX,MAX,4,6,0}
};
int start = 0;
int[] dijsktra = Dijsktra(weight,start);
}

  参考自:http://www.cnblogs.com/junyuhuang/p/4544747.html

最短路径之迪杰斯特拉算法的Java实现的更多相关文章

  1. 最短路径之迪杰斯特拉算法(Java)

    1)Dijkstra算法适用于求图中两节点之间最短路径 2)Dijkstra算法设计比较巧妙的是:在求源节点到终结点自底向上的过程中,源节点到某一节点之间最短路径的确定上(这也是我之前苦于没有解决的地 ...

  2. c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法

    c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...

  3. [从今天开始修炼数据结构]图的最短路径 —— 迪杰斯特拉算法和弗洛伊德算法的详解与Java实现

    在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第 ...

  4. 数据结构---公交线路提示系统05(内附读取表格+迪杰斯特拉算法Java代码)

    今天做的最多的事情就是纠错了,通过添加输出语句判断错误来源: 找到错误来源: wb = new XSSFWorkbook(input);//语句创建错误 网上查询发现是jar包的问题: 下图为poi的 ...

  5. Java 迪杰斯特拉算法实现查找最短距离

    迪杰斯特拉算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是 ...

  6. C++迪杰斯特拉算法求最短路径

    一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...

  7. 最短路径之迪杰斯特拉(Dijkstra)算法

    迪杰斯特拉(Dijkstra)算法主要是针对没有负值的有向图,求解其中的单一起点到其他顶点的最短路径算法.本文主要总结迪杰斯特拉(Dijkstra)算法的原理和算法流程,最后通过程序实现在一个带权值的 ...

  8. 算法与数据结构(六) 迪杰斯特拉算法的最短路径(Swift版)

    上篇博客我们详细的介绍了两种经典的最小生成树的算法,本篇博客我们就来详细的讲一下最短路径的经典算法----迪杰斯特拉算法.首先我们先聊一下什么是最短路径,这个还是比较好理解的.比如我要从北京到济南,而 ...

  9. 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)

    文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...

随机推荐

  1. 转载--博弈问题及SG函数(真的很经典)

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  2. 【Foreign】最大割 [线性基]

    最大割 Time Limit: 15 Sec  Memory Limit: 256 MB Description Input Output Sample Input 3 6 1 2 1 1 2 1 3 ...

  3. HDU1847 Good Luck in CET-4 Everybody!

    大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此.当然,作为在 考场浸润了十几载的当代大学生,Kiki和Cici更懂得 ...

  4. 在Xcode5下实现4.5,4.6的效果

      https://www.evernote.com/shard/s227/sh/a575caee-d6a8-4f43-9037-145b9a6913ca/c9a2befa22ce7c3f547f58 ...

  5. swift中的尾随闭包的用法

    尾随闭包就是这个函数的最后一个参数是一个闭包,所以规定这个闭包既可以写在函数的参数括号里面,也可以直接放在最后面来使用,就像重新给这个函数定义了一次一样,有些怪,不过用的时候,可以把闭包写在外面的.这 ...

  6. BZoj 1003 物流运输 DP+最短路

    2013-09-11 09:56 W[I]代表前I天能取得的最小花费,假设在第J天更改一次路线,那么如果有 W[I]>W[J]+第j+1到第I天的最小花费+更改路线的花费(K) 那么更新W[I] ...

  7. python函数篇:名称空间、作用域和函数的嵌套

    一.名称空间:(有3类) (1)内置名称空间(全局作用域) (2)全局名称空间(全局作用域) (3)局部名称空间(局部作用域) 关于名称空间的查询: x=1 def func(): print('fr ...

  8. 单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式

    一 表结构如下:  万行 CREATE TABLE t_audit_operate_log (  Fid bigint(16) AUTO_INCREMENT,  Fcreate_time int(10 ...

  9. UVALIVE 3562 Remember the A La Mode!

    费用流 建图很简单直接上代码 #include <map> #include <set> #include <list> #include <cmath> ...

  10. Chrome扩展及应用开发

    Chrome扩展及应用开发(电子书) http://www.ituring.com.cn/minibook/950 文档 官方 https://developer.chrome.com/extensi ...