Manacher算法(马拉车)
学习博客:https://www.cnblogs.com/love-yh/p/7072161.html
首先,得先了解什么是回文串(我之前就不是很了解,汗)。回文串就是正反读起来就是一样的,如“abba”。关于采用时间复杂度为O(n^2),以每个字符为中心去向两端遍历寻找最大回文串的方法,可以见我之前些的博客,戳这里!
当我们遇到字符串为“aaaaaaaaa”,之前的算法就会发生各个回文相互重叠的情况,会产生重复计算,然后就产生了一个问题,能否改进?答案是能,1975年,一个叫Manacher发明了Manacher Algorithm算法,俗称马拉车算法,其时间复杂为O(n)。该算法是利用回文串的特性来避免重复计算的,至于如何利用,且由后面慢慢道来。
在时间复杂度为O(n^2)的算法中,我们在遍历的过程要考虑到回文串长度的奇偶性,比如说“abba”的长度为偶数,“abcba”的长度为奇数,这样在寻找最长回文子串的过程要分别考奇偶的情况,是否可以统一处理了?
马拉车算法:
一)第一步是改造字符串S,变为T,其改造的方法如下:
在字符串S的字符之间和S的首尾都插入一个“#”,如:S=“abba”变为T="#a#b#b#a#" 。我们会发现S的长度是4,而T的长度为9,长度变为奇数了!!那S的长度为奇数的情况时,变化后的长度还是奇数吗?我们举个例子,S=“abcba”,变化为T=“#a#b#c#b#a#”,T的长度为11,所以我们发现其改造的目的是将字符串的长度变为奇数,这样就可以统一的处理奇偶的情况了。
二)第二步,为了改进回文相互重叠的情况,我们将改造完后的T[ i ] 处的回文半径存储到数组P[ ]中,P[ i ]为新字符串T的T[ i ]处的回文半径,表示以字符T[i]为中心的最长回文字串的最端右字符到T[i]的长度,如以T[ i ]为中心的最长回文子串的为T[ l, r ],那么P[ i ]=r-i+1。这样最后遍历数组P[ ],取其中最大值即可。若P[ i ]=1表示该回文串就是T[ i ]本身。举一个简单的例子感受一下:
数组P有一性质,P[ i ]-1就是该回文子串在原字符串S中的长度 ,那就是P[i]-1就是该回文子串在原字符串S中的长度,至于证明,首先在转换得到的字符串T中,所有的回文字串的长度都为奇数,那么对于以T[i]为中心的最长回文字串,其长度就为2*P[i]-1,经过观察可知,T中所有的回文子串,其中分隔符的数量一定比其他字符的数量多1,也就是有P[i]个分隔符,剩下P[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为P[i]-1。【这段解释引用 dyx心心】
另外,由于第一个和最后一个字符都是#号,且也需要搜索回文,为了防止越界,我们还需要在首尾再加上非#号字符,实际操作时我们只需给开头加上个非#号字符,结尾不用加的原因是字符串的结尾标识为'\0',等于默认加过了。这样原问题就转化成如何求数组P[ ]的问题了。
三)如何求数组P [ ]
从左往右计算数组P[ ], Mi为之前取得最大回文串的中心位置,而R是最大回文串能到达的最右端的值。
1)当 i <=R时,如何计算 P[ i ]的值了?毫无疑问的是数组P中点 i 之前点对应的值都已经计算出来了。利用回文串的特性,我们找到点 i 关于 Mi 的对称点 j ,其值为 j= 2*Mi-i 。因,点 j 、i 在以Mi 为中心的最大回文串的范围内([L ,R]),
a)那么如果P[j] <R-i (同样是L和j 之间的距离),说明,以点 j 为中心的回文串没有超出范围[L ,R],由回文串的特性可知,从左右两端向Mi遍历,两端对应的字符都是相等的。所以P[ j ]=P[ i ](这里得先从点j转到点i 的情况),如下图:
b)如果P[ j ]>=R-i (即 j 为中心的回文串的最左端超过 L),如下图所示。即,以点 j为中心的最大回文串的范围已经超出了范围[L ,R] ,这种情况,等式P[ j ]=P[ i ]还成立吗?显然不总是成立的!因,以点 j 为中心的回文串的最左端超过L,那么在[ L, j ]之间的字符肯定能在( j, Mi ]找到相等的,由回文串的特性可知,P[ i ] 至少等于R- i,至于是否大于R-i(图中红色的部分),我们还要从R+1开始一一的匹配,直达失配为止,从而更新R和对应的Mi以及P[ i ]。
2)当 i > R时,如下图。这种情况,没法利用到回文串的特性,只能老老实实的一步步去匹配。
相应的代码如下:
#include<iostream>
#include<vector>
using namespace std;
string Manacher(string s)
{
/**改造字符串*/
int len=s.size();
string res="$#";
for(int i=;i<len;i++)
{
res+=s[i];
res+='#';
}
// cout<<res<<endl; //改造后的串 /** 数组 */
vector<int>P(res.size(),);
int Mid=,R=;//Mid为当前选中的回文串的中心 R为当前选中的回文串能到达的最右端的位置
int maxLen=,maxPoint=;//最大回文串长度 最大回文串中心点
for(int i=;i<res.size();i++)
{
P[i]=R>i?min(P[*Mid-i],R-i):;
while(res[i+P[i]]==res[i-P[i]]) P[i]++;//+个$的作用出来了 这样就不会越界了
if(R<i+P[i]) //超过了最右端 则改变中心点和对应的最右端
{
R=i+P[i];
Mid=i;
}
if(maxLen<P[i])//更新最大回文串长度 并记下此时的中心
{
maxLen=P[i];
maxPoint=i;
} }
// cout<<"*"<<maxLen<<endl;
return s.substr((maxPoint-maxLen)/,maxLen-); }
int main()
{
string s;
cin>>s;
cout<<Manacher(s)<<endl;
return ;
}
Manacher算法(马拉车)的更多相关文章
- Manacher算法 (马拉车算法)
#include<iostream> #include<string.h> #include<algorithm> using namespace std; ]; ...
- Manacher算法学习 【马拉车】
好久没写算法学习博客了 比较懒,一直在刷水题 今天学一个用于回文串计算问题manacher算法[马拉车] 回文串 回文串:指的是以字符串中心为轴,两边字符关于该轴对称的字符串 ——例如abaaba 最 ...
- manacher(马拉车)算法详解+例题一道【bzoj3790】【神奇项链】
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=39091399 (CSDN好像有bug,不知道为什 ...
- manacher(马拉车)算法
断断续续地看了两天的马拉车算法,可算是给搞明白了(贼开心),这算是自己搞懂的第一个算法了(23333333333333)这个算法照目前自己的理解来看,貌似就只能求个字符串中的回文串(接触这个算法是要求 ...
- Manacher算法(马拉车)求最长回文子串
Manacher算法求最长回文字串 算法思路 按照惯例((・◇・)?),这里只是对算法的一些大体思路做一个描述,因为找到了相当好理解的博客可以参考(算法细节见参考文章). 一般而言,我们的判断回文算法 ...
- Manacher算法(马拉车算法)浅谈
什么是Manacher算法? 转载自百度百科 Manachar算法主要是处理字符串中关于回文串的问题的,它可以在 O(n) 的时间处理出以字符串中每一个字符为中心的回文串半径,由于将原字符串处理成两倍 ...
- manacher算法_求最长回文子串长度
很好的总结,转自: http://blog.csdn.net/dyx404514/article/details/42061017 总结为:两大情况,三小情况. 两大情况:I. i <= p 1 ...
- [转] Manacher算法详解
转载自: http://blog.csdn.net/dyx404514/article/details/42061017 Manacher算法 算法总结第三弹 manacher算法,前面讲了两个字符串 ...
- Manacher算法学习笔记 | LeetCode#5
Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的 ...
- 最长回文子串问题-Manacher算法
转:http://blog.csdn.net/dyx404514/article/details/42061017 Manacher算法 算法总结第三弹 manacher算法,前面讲了两个字符串相算法 ...
随机推荐
- 编写高质量代码改善C#程序的157个建议——建议59:不要在不恰当的场合下引发异常
建议59:不要在不恰当的场合下引发异常 常见的不易于引发异常的情况是对在可控范围内的输入和输出引发异常. private void SaveUser3(User user) { ) { throw n ...
- 对request,session,application作用域形象理解
看到一篇比较有意思的文章,分享一下.原网址:http://blog.csdn.net/rushkid02/article/details/8063792 几乎所有的Web开发语言都支持Session功 ...
- POJ-3481 Double Queue (splay)
The new founded Balkan Investment Group Bank (BIG-Bank) opened a new office in Bucharest, equipped w ...
- adb命令安装及卸载应用
一.手机连接电脑,检测手机是否已开启授权并连接成功 adb devices 二.安装应用 adb install UYUN-CARRIER-Android.apk 三.卸载应用 1.查看应用包名 ad ...
- DELPHI XE5 UP2 运行IOS 遇到 Wrapper init failed: (null)问题的解决办法
一.问题表现: 在MAC OSX(10.9.2)上安装了比较新的XCODE5.1 和COMMAND LINE TOOLS 在DELPHI XE5 UP2上放了一个按钮,输出到MAC OSX上,出现: ...
- Bitnami WordPress如何修改MySQL root的默认密码?
Bitnami WordPress安装完毕后,MySQL root的默认密码为空,我们应该马上修改MySQL密码,在开始菜单里面,进入Bitnami ,启动控制台程序,随后输入: mysql -u r ...
- sqlite数据库文件查看
- 码云&Github 个人代码资源快速查找
1.Siri SiriShortCut
- 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...
- 用python实现按权重对N个数据进行选择
需求:某公司有N个人,根据每个人的贡献不同,按贡献值给每个人赋予一个权重.设计一种算法实现公平的抽奖. 需求分析:按照权重对数据进行选择. 代码实现: 1 def fun(n,p): 2 " ...