$bzoj1009-HNOI2008$ $GT$考试 字符串$dp$ 矩阵快速幂
题面描述
- 阿申准备报名参加\(GT\)考试,准考证号为\(N\)位数\(x_1,x_2,...,x_n\ (0\leq x_i\leq 9)\),他不希望准考证号上出现不吉利的数字。
他的不吉利数字\(a_1,a_2,...,a_m\ (0\leq a_i\leq 9)\)有\(M\)位,不出现是指\(x_1,x_2,...,x_n\)中没有恰好一段等于\(a_1,a_2,...,a_m\)。 \(a_1\)和\(x_1\)可以为\(0\)
- 阿申准备报名参加\(GT\)考试,准考证号为\(N\)位数\(x_1,x_2,...,x_n\ (0\leq x_i\leq 9)\),他不希望准考证号上出现不吉利的数字。
输入格式
- 第一行输入\(N,M,K\)。接下来一行输入\(M\)位的数。 \(N\leq 10^9,M\leq 20,K\leq 1000\)
输出格式
- 阿申想知道不出现不吉利数字的号码有多少种,输出模\(K\)取余的结果。
题解
首先,看到题意是在一定条件下统计 位数\(\leq N\)的数 的个数,第一反应数位\(dp\)。题目对要统计的数的要求是 这个数不能与模式串(不吉利数字)匹配。我们回忆\(KMP\)过程,当原串与模式串在某一位失配时,我们将模式串指针\(x\)通过\(next_x\)不断回跳,直到能够与原串匹配。
类似的,当我们按照数位\(dp\)的阶段,在后面加上\(0-9\)中的数字\(x\)时,我们同样通过\(next_x\)匹配,再在尾部加上数字\(x\)。
因此我们可以设计出这样的\(dp\)方程。令\(f_{i,j}\)表示前\(i\)位匹配到模式串的第\(j\)位的方案数,令\(pre_{i,0..9}\)表示通过\(next_i\)对于在第\(i\)位后加上数字\(0\leq x\leq 9\)匹配到模式串的第\(pre_{i,x}\)位。
- \[f_{i,pre_{j,x}}+=f_{i-1,j}\ (0\leq j<m,0\leq x\leq 9)
\] 这样我们得到了一个时间复杂度为\(O(nm)\)的优秀算法。
再看一眼范围\(n\leq 10^9\)!!这样我们就只能用加速线性递推式的神器矩阵快速幂。将递推式写成矩阵的形式,用矩阵快速幂.....(感觉根本不会讲)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=25;
int n,m,mod;
int a[MAXN];
int nxt[MAXN];
struct rec{
int a[MAXN][MAXN];
rec(){
for (int i=0;i<=m;i++){
for (int j=0;j<=m;j++) a[i][j]=0;
}
}
} A;
rec mul(rec a,rec b){
rec c;
for (int k=0;k<=m;k++){
for (int i=0;i<=m;i++){
for (int j=0;j<=m;j++){
c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%mod;
}
}
}
return c;
}
rec mod_pow(rec a,int n){
rec ans=a; n--;
while (n){
if (n&1) ans=mul(ans,a);
a=mul(a,a);
n>>=1;
}
return ans;
}
int main(){
scanf("%d%d%d",&n,&m,&mod);
for (int i=1;i<=m;i++){
char c=getchar(); while (c<'0'||c>'9') c=getchar();
a[i]=c-'0';
}
// cout<<"done"<<endl;
nxt[1]=0;
for (int i=2;i<=m;i++){
int pre=nxt[i-1];
while (pre>0&&a[pre+1]!=a[i]) pre=nxt[pre];
if (a[pre+1]==a[i]) pre++;
nxt[i]=pre;
}
// cout<<"done"<<endl;
for (int i=0;i<m;i++){
for (int j=0;j<=9;j++){
// cout<<i<<" "<<j<<endl;
int pre=i;
while (pre>0&&a[pre+1]!=j) pre=nxt[pre];
if (a[pre+1]==j) pre++;
if (pre!=m) A.a[pre][i]=(A.a[pre][i]+1)%mod;
}
}
// cout<<"done"<<endl;
A=mod_pow(A,n);
int ans=0;
for (int i=0;i<m;i++) ans=(ans+A.a[i][0])%mod;
printf("%d\n",ans);
return 0;
}
天助自助者
随机推荐
- 验证码测试-demo
<!DOCTYPE html><html><head><meta charset="UTF-8"><title>Inse ...
- (函数分治法)实现pow函数(x的y次方幂)
题目:实现pow函数. 题目分析:因为一个一个乘,循环太大,参考矩阵连乘问题:对于n=4的话,可以得出x的平方,然后平方与平方相乘.节省计算次数.对于偶数的幂,只要x的平方多次递归调用即可:对于奇数的 ...
- Web Pages version 2兼容 Web Pages version 1的设置
If you want to run a site using Web Pages version 1 (instead of the default, as in the previous poin ...
- (转)ASP.NET基础之HttpHandler学习
原文地址:http://www.cnblogs.com/wujy/archive/2013/08/18/3266009.html 经过前两篇[ASP.NET基础之HttpModule学习]和[ASP. ...
- document.domain 跨域问题
document.domain用来得到当前网页的域名. 比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给docume ...
- SxsTrace使用的方法
Windows7平台上有一个强大的SxsTrace工具,可以跟踪调试应用程序运行时需要的动态库的版本和路径. SxsTrace使用的方法: 1.首先必须以Administrator用户身份登录 ...
- 做ETL的时候用到的数据同步更新代码
这里是用的从一个库同步到另一个库,代码如下 private void IncrementalSyncUpdate(string fromConn, string toConn, Dictionary& ...
- The 'microsoft.jet.oledb.4.0' provider is not registered on the local machin
1,2选取目标站点,然后3的高级设置,4启用32位的应用程序的属性变为true就可以了.当然,网络上还有其他的版本,你也可以尝试下. 原文地址:http://weblogs.asp.net/kenco ...
- sqlServer基础知识
sqlServer 基础知识 大纲 创建数据库 1 创建表 2 备份表 3 删除表 4 修改表 5 查询出重复的数据 6 增删改查 7 添加约束 8 分页存储过程 9 排序 10 类型转换 11 ...
- spring (1)
相关名词: 控制反转(IoC):将对象的创建交由spring创建,1创建新class,2xml中配置 3测试context.getBean("") 类似对象工厂(工厂模式)-xml ...