开始觉得是规律题的,自以为是的推了一个规律,结果测试数据都没过。。。。看了love神的博客才发现只是把式子展开就找到规律了。不过挺6的是我虽然想错了,但是维护的的东西没有错,只是改改(改了进两个小时好吗????)就过了 
题意:给你一串数字,然后两种操作: 
“= l r x” 是把数组第l位置到r位置的值都变为x 
“? l r k”就是求一个公式的和 ∑(l <= i <= r) ai*(i-l+1)^k

题解:因为k比较小嘛,可以展开式子看一下规律,展开后注意要往 构造常数或者构造递归 迭代 方面想。 
当k=0时为 ai 
当k=1时为 ai*(1-l) + ai*i 
当k=2时为 ai*(1-l)^2+ai*2*i*(1-l)+ai*i^2 
这样就可以得到:当k>0时,每个k都可以使用之前的(0 , k-1)迭代求出来 
  其中的系数就是二项式的系数(话说我更喜欢用杨辉三角来算),这样就直接线段树每个节点只维护ai* i^j(0 <= j <= 5)就好了。注意这儿是区间更新,所以要预处理一个对于每个k次方的前缀和,这样lazy操作是就可以节约时间了,还有就是注意取模之前要看看是否是负数,因为负数的话要+mod

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define eps 1E-8
/*注意可能会有输出-0.000*/
#define Sgn(x) (x<-eps? -1 :x<eps? 0:1)//x为两个浮点数差的比较,注意返回整型
#define Cvs(x) (x > 0.0 ? x+eps : x-eps)//浮点数转化
#define zero(x) (((x)>0?(x):-(x))<eps)//判断是否等于0
#define mul(a,b) (a<<b)
#define dir(a,b) (a>>b)
typedef long long ll;
typedef unsigned long long ull;
const int Inf=<<;
const double Pi=acos(-1.0);
const ll Mod=1000000007ll;
const int Max=<<;
int dir[][]={{},{,},{,,},{,,,},{,,,,},{,,,,,}};//符合二项式
ll ans;//注意线段树维护的是权值与下标的k次方的乘积
ll segtr[][Max],mark[Max];//存6个值,代表k从0到5 区间标记
char str[];
ll ini[][];//预处理
void Init()//预处理出一个次方前缀和
{
for(int j=;j<;j++)
ini[][j]=0ll;
for(int i=;i<;i++)//底数为i
{
ini[i][]=1ll;
for(int j=;j<;j++)//次方为j
{
ini[i][j]=(ini[i][j-]*i)%Mod;
}
}
for(int i=;i<;i++)
for(int j=;j<;j++)
ini[i][j]=(ini[i][j]+ini[i-][j])%Mod;//前缀和,注意分开求
return;
}
void Upnow(int now,int next)
{
for(int i=;i<;i++)
segtr[i][now]=(segtr[i][next]+segtr[i][next|])%Mod;
return ;
}
void Create(int sta,int enn,int now)
{
mark[now]=-1ll;
if(sta==enn)
{
scanf("%I64d",&segtr[][now]);
for(int i=;i<;i++)
segtr[i][now]=(segtr[i-][now]*sta)%Mod;//存下每个数的位置的k次方
return;
}
int mid=dir(sta+enn,);
int next=mul(now,);
Create(sta,mid,next);
Create(mid+,enn,next|);
Upnow(now,next);
return;
}
void Downnow(int now,int mid,int next,int sta,int enn)//lazy操作
{
if(mark[now]>-1ll)
{
mark[next]=mark[now];
mark[next|]=mark[now];
for(int i=;i<;i++)
{
segtr[i][next]=((mark[now]*(ini[mid][i]-ini[sta-][i]))%Mod+Mod)%Mod;
segtr[i][next|]=((mark[now]*(ini[enn][i]-ini[mid][i]))%Mod+Mod)%Mod;
}
mark[now]=-1ll;
}
return;
}
void Update(int sta,int enn,int now,int x,int y,int z,int kk1)
{
if(sta>=x&&enn<=y)
{
if(z<0ll)//查询
{
ll ans2=segtr[][now];
for(int i=;i<kk1+;i++)//关键
ans2=((ans2*((ll)z+1ll)+(ll)dir[kk1][i]*segtr[i][now])%Mod+Mod)%Mod;
ans=(ans+ans2)%Mod;
}
else//修改
{
mark[now]=z;
for(int i=;i<;i++)
segtr[i][now]=((ll)z*(ini[enn][i]-ini[sta-][i])%Mod+Mod)%Mod;//更新的关键
}
return;
}
int mid=dir(sta+enn,);
int next=mul(now,);
Downnow(now,mid,next,sta,enn);
if(mid>=x)
Update(sta,mid,next,x,y,z,kk1);
if(mid<y)
Update(mid+,enn,next|,x,y,z,kk1);
Upnow(now,next);
return;
}
int main()
{
Init();
int n,m,lef,rig,val;
while(~scanf("%d %d",&n,&m))
{
Create(,n,);
for(int i=;i<m;i++)
{
scanf("%s %d %d %d",str,&lef,&rig,&val);
if(str[]=='=')
Update(,n,,lef,rig,val,);
else
{
ans=0ll;
Update(,n,,lef,rig,-lef,val);
printf("%I64d\n",ans);
}
}
}
return ;
}

CodeForces 266E More Queries to Array...(线段树+式子展开)的更多相关文章

  1. [Codeforces 266E]More Queries to Array...(线段树+二项式定理)

    [Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...

  2. 暑假集训单切赛第一场 CF 266E More Queries to Array(线段树+二项式展开式)

    比赛时,第二题就是做的这个,当时果断没仔细考虑,直接用线段树暴力求.结果易想而知,超时了. 比赛后搜了搜题解,恍然大悟. 思路:显然用线段树,但是由于每次查询都会有变,所以不可能存储题目中的式子.   ...

  3. Codeforces 1114F Please, another Queries on Array? 线段树

    Please, another Queries on Array? 利用欧拉函数的计算方法, 用线段树搞一搞就好啦. #include<bits/stdc++.h> #define LL ...

  4. codeforces 719E E. Sasha and Array(线段树)

    题目链接: E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input sta ...

  5. [Codeforces266E]More Queries to Array...——线段树

    题目链接: Codeforces266E 题目大意:给出一个序列$a$,要求完成$Q$次操作,操作分为两种:1.$l,r,x$,将$[l,r]$的数都变为$x$.2.$l,r,k$,求$\sum\li ...

  6. Codeforces 1114F Please, another Queries on Array? [线段树,欧拉函数]

    Codeforces 洛谷:咕咕咕 CF少有的大数据结构题. 思路 考虑一些欧拉函数的性质: \[ \varphi(p)=p-1\\ \varphi(p^k)=p^{k-1}\times (p-1)= ...

  7. Codeforces 719 E. Sasha and Array (线段树+矩阵运算)

    题目链接:http://codeforces.com/contest/719/problem/E 题意:操作1将[l, r] + x; 操作2求f[l] + ... + f[r]; 题解:注意矩阵可以 ...

  8. Can you answer these queries? HDU 4027 线段树

    Can you answer these queries? HDU 4027 线段树 题意 是说有从1到编号的船,每个船都有自己战斗值,然后我方有一个秘密武器,可以使得从一段编号内的船的战斗值变为原来 ...

  9. [Codeforces 280D]k-Maximum Subsequence Sum(线段树)

    [Codeforces 280D]k-Maximum Subsequence Sum(线段树) 题面 给出一个序列,序列里面的数有正有负,有两种操作 1.单点修改 2.区间查询,在区间中选出至多k个不 ...

随机推荐

  1. php 工厂方法模式

    #使用工厂方法模式是不知道要创建类的对象有哪些.interface IFactory{ public function CreateOperation();#工厂方法模式只有单个产品 } class ...

  2. SVG 与 Canvas:如何选择

    SVG 与 Canvas:如何选择 61(共 69)对本文的评价是有帮助 - 评价此主题   本主题一开始将对 SVG 与 Canvas 进行简要比较,接下来会讨论大量的比较代码示例,如光线跟踪和绿屏 ...

  3. ES6学习笔记之变量声明let,const

    最近用淘宝的weex做了个项目,最近稍微闲下来了.正好很久没有接触RN了,所以趁这个机会系统的学习一下ES6的相关知识. 孔子说:没有对比就没有伤害.所以我们要拿ES6和ES5好好对比的学习.这样才能 ...

  4. 【BZOJ2762】[JLOI2011]不等式组 树状数组

    [BZOJ2762][JLOI2011]不等式组 Description 旺汪与旺喵最近在做一些不等式的练习.这些不等式都是形如ax+b>c 的一元不等式.当然,解这些不等式对旺汪来说太简单了, ...

  5. 项目中调用ExcelCom组件时的配置流程

    异常提示如下:         Microsoft Office Excel 不能访问文件“*.xls”. 可能的原因有:        1 文件名称或路径不存在.       2 文件正被其他程序使 ...

  6. POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】

    链接: http://poj.org/problem?id=1860 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  7. JS+PHP瀑布流效果

    miai.php,代码如下: $link = mysql_connect("localhost","root",""); //连接数据库 $ ...

  8. Python3.6全栈开发实例[022]

    22.完成彩票36选7的功能. 从36个数中随机的产生7个数. 最终获取到7个不重复的数据作为最终的开奖结果.随机数: from random import randintrandint(0, 20) ...

  9. boost之数据结构和容器

    1.静态数组array,boost对静态数组进行了封装,使用和普通数组一样的初始化式进行初始化. #include <iostream> #include <boost/array. ...

  10. Debussy的安装与使用

    1.概述 Debussy是NOVAS Software, Inc ( 思源科技 )发展的HDL Debug & Analysis tool,这套软体主要不是用来跑模拟或看波形,它最强大的功能是 ...