poj 3608(旋转卡壳求解两凸包之间的最短距离)
Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 9768 | Accepted: 2866 | Special Judge |
Description
Thousands of thousands years ago there was a small kingdom located in the middle of the Pacific Ocean. The territory of the kingdom consists two separated islands. Due to the impact of the ocean current, the shapes of both the islands became convex polygons. The king of the kingdom wanted to establish a bridge to connect the two islands. To minimize the cost, the king asked you, the bishop, to find the minimal distance between the boundaries of the two islands.
Input
The input consists of several test cases.
Each test case begins with two integers N, M. (3 ≤ N, M ≤ 10000)
Each of the next N lines contains a pair of coordinates, which describes the position of a vertex in one convex polygon.
Each of the next M lines contains a pair of coordinates, which describes the position of a vertex in the other convex polygon.
A line with N = M = 0 indicates the end of input.
The coordinates are within the range [-10000, 10000].
Output
For each test case output the minimal distance. An error within 0.001 is acceptable.
Sample Input
4 4
0.00000 0.00000
0.00000 1.00000
1.00000 1.00000
1.00000 0.00000
2.00000 0.00000
2.00000 1.00000
3.00000 1.00000
3.00000 0.00000
0 0
Sample Output
1.00000 引自:http://blog.csdn.net/acmaker/article/details/3178696
两个凸多边形 P 和 Q 之间的最小距离由多边形间的对踵点对确立。 存在凸多边形间的三种多边形间的对踵点对, 因此就有三种可能存在的最小距离模式:
- “顶点-顶点”的情况
- “顶点-边”的情况
- “边-边”的情况
换句话说, 确定最小距离的点对不一定必须是顶点。 下面的三个图例表明了以上结论:
给定结果, 一个基于旋转卡壳的算法自然而然的产生了:
考虑如下的算法, 算法的输入是两个分别有 m 和 n 个逆时针给定顶点的凸多边形 P 和 Q。
- 计算 P 上 y 坐标值最小的顶点(称为 yminP ) 和 Q 上 y 坐标值最大的顶点(称为 ymaxQ)。
- 为多边形在 yminP 和 ymaxQ 处构造两条切线 LP 和 LQ 使得他们对应的多边形位于他们的右侧。 此时 LP 和 LQ 拥有不同的方向, 并且 yminP 和 ymaxQ 成为了多边形间的一个对踵点对。
- 计算距离(yminP,ymaxQ) 并且将其维护为当前最小值。
- 顺时针同时旋转平行线直到其中一个与其所在的多边形的边重合。
- 如果只有一条线与边重合, 那么只需要计算“顶点-边”对踵点对和“顶点-顶点”对踵点对距离。 都将他们与当前最小值比较, 如果小于当前最小值则进行替换更新。 如果两条切线都与边重合, 那么情况就更加复杂了。 如果边“交叠”, 也就是可以构造一条与两条边都相交的公垂线(但不是在顶点处相交), 那么就计算“边-边”距离。 否则计算三个新的“顶点-顶点”对踵点对距离。 所有的这些距离都与当前最小值进行比较, 若小于当前最小值则更新替换。
- 重复执行步骤4和步骤5, 直到新的点对为(yminP,ymaxQ)。
- 输出最小距离。
模板如下:
/*
叉积的一个非常重要的性质是可以通过它的符号来判断两矢量相互之间的顺逆时针关系:
若 P * Q > 0,则 P 在 Q 的顺时针方向;
若 P * Q < 0, 则 P 在 Q 的逆时针方向;
若 P * Q = 0,则 P 与 Q 共线,但不确定 P, Q 的方向是否相同;
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <algorithm>
using namespace std;
const double esp = 1e-;
const int N = ;
struct Point
{
double x,y;
} p[N],q[N];
int n,m;
///叉积
double mult_cross(Point a,Point b,Point c)
{
return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
}
///点积
double mult_point(Point a,Point b,Point c){
return (a.x-c.x)*(b.x-c.x)+(a.y-c.y)*(b.y-c.y);
}
///距离
double dis(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
///将点集按照逆时钟排序
void clockwise_sort(Point p[],int n){
for(int i=;i<n-;i++){
double tmp = mult_cross(p[i+],p[i+],p[i]);
if(tmp>) return;
else if(tmp<){
reverse(p,p+n);
return;
}
}
}
///点c到直线ab的最短距离
double GetDist(Point a,Point b,Point c){
if(dis(a,b)<esp) return dis(b,c); ///a,b是同一个点
if(mult_point(b,c,a)<-esp) return dis(a,c); ///投影
if(mult_point(a,c,b)<-esp) return dis(b,c);
return fabs(mult_cross(b,c,a)/dis(a,b)); }
///求一条线段ab的两端点到另外一条线段bc的距离,反过来一样,共4种情况
double MinDist(Point a,Point b,Point c,Point d){
return min(min(GetDist(a,b,c),GetDist(a,b,d)),min(GetDist(c,d,a),GetDist(c,d,b)));
} double min_PQ(Point p[],Point q[],int n,int m){
int yminP = ,ymaxQ=;
for(int i=;i<n;i++){ ///找到点集p组成的凸包的左下角
if(p[i].y<p[yminP].y||(p[i].y==p[yminP].y)&&(p[i].x<p[yminP].x)) yminP = i;
}
for(int i=;i<m;i++){ ///找到点集q组成的凸包的右上角
if(q[i].y>q[ymaxQ].y||(q[i].y==q[ymaxQ].y)&&(q[i].x>q[ymaxQ].x)) ymaxQ = i;
}
double ans = dis(p[yminP],q[ymaxQ]); ///距离(yminP,ymaxQ)维护为当前最小值。
p[n]=p[],q[m]=q[];
for(int i=;i<n;i++){
double tmp;
while(tmp=(mult_cross(q[ymaxQ+],p[yminP],p[yminP+])-mult_cross(q[ymaxQ],p[yminP],p[yminP+]))>esp)
ymaxQ = (ymaxQ+)%m;
if(tmp<-esp) ans = min(ans,GetDist(p[yminP],p[yminP+],q[ymaxQ]));
else ans=min(ans,MinDist(p[yminP],p[yminP+],q[ymaxQ],q[ymaxQ+]));
yminP = (yminP+)%n;
}
return ans;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF,n+m)
{
for(int i=; i<n; i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
}
for(int i=; i<m; i++)
{
scanf("%lf%lf",&q[i].x,&q[i].y);
}
clockwise_sort(p,n);
clockwise_sort(q,m);
double ans = min(min_PQ(p,q,n,m),min_PQ(q,p,m,n));
printf("%.5lf\n",ans);
}
return ;
}
poj 3608(旋转卡壳求解两凸包之间的最短距离)的更多相关文章
- poj 3608 旋转卡壳求不相交凸包最近距离;
题目链接:http://poj.org/problem?id=3608 #include<cstdio> #include<cstring> #include<cmath ...
- POJ 3608 Bridge Across Islands(旋转卡壳,两凸包最短距离)
Bridge Across Islands Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7202 Accepted: ...
- poj 2079(旋转卡壳求解凸包内最大三角形面积)
Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 9060 Accepted: 2698 Descript ...
- Bridge Across Islands POJ - 3608 旋转卡壳求凸包最近距离
\(\color{#0066ff}{题目描述}\) 几千年前,有一个小王国位于太平洋的中部.王国的领土由两个分离的岛屿组成.由于洋流的冲击,两个岛屿的形状都变成了凸多边形.王国的国王想建立一座桥来连接 ...
- 「POJ-3608」Bridge Across Islands (旋转卡壳--求两凸包距离)
题目链接 POJ-3608 Bridge Across Islands 题意 依次按逆时针方向给出凸包,在两个凸包小岛之间造桥,求最小距离. 题解 旋转卡壳的应用之一:求两凸包的最近距离. 找到凸包 ...
- poj 3608 Bridge Across Islands 两凸包间最近距离
/** 旋转卡壳,, **/ #include <iostream> #include <algorithm> #include <cmath> #include ...
- POJ 3608 旋转卡壳
思路: 旋转卡壳应用 注意点&边 边&边 点&点 三种情况 //By SiriusRen #include <cmath> #include <cstdi ...
- POJ3608(旋转卡壳--求两凸包的最近点对距离)
题目:Bridge Across Islands 分析:以下内容来自:http://blog.csdn.net/acmaker/article/details/3178696 考虑如下的算法, 算法的 ...
- Poj 2187 旋转卡壳
Poj 2187 旋转卡壳求解 传送门 旋转卡壳,是利用凸包性质来求解凸包最长点对的线性算法,我们逐渐改变每一次方向,然后枚举出这个方向上的踵点对(最远点对),类似于用游标卡尺卡着凸包旋转一周,答案就 ...
随机推荐
- homework5 for java
- 关于php网络爬虫phpspider
前几天,被老板拉去说要我去抓取大众点评某家店的数据,当然被我义正言辞的拒绝了,理由是我不会...但我的反抗并没有什么卵用,所以还是乖乖去查资料,因为我是从事php工作的,首先找的就是php的网络爬虫源 ...
- 解析LINQ To Object
1.解剖Linq to object 此文转载自http://www.cnblogs.com/irenebbkiss/p/4155480.html LINQ想必大家都不陌生了,它 的出现使得我们的 ...
- Java基础知识-去重
java基础知识-去掉list集合中的重复元素: 思路: 首先新建一个容器resultList用来存放去重之后的元素 然后遍历sourceList集合中的元素 判断所遍历的元素是否已经存在于resul ...
- 【bzoj5070】危险的迷宫 费用流
题目描述 JudgeOnline/upload/201710/55.doc 输入 第一行是两个整数A与B(1≤A,B≤10),中间用空格分隔,表示该迷宫是A行B列的. 第2行至第A+1行,每行有B个1 ...
- HTML5<canvas>标签:使用canvas元素在网页上绘制渐变和图像(2)
详细解释HTML5 Canvas中渐进填充的参数设置与使用,Canvas中透明度的设置与使用,结合渐进填充与透明度支持,实现图像的Mask效果. 一:渐进填充(Gradient Fill) Canva ...
- SPOJ HIGH(生成树计数,高斯消元求行列式)
HIGH - Highways no tags In some countries building highways takes a lot of time... Maybe that's bec ...
- BZOJ 1023: [SHOI2008]cactus仙人掌图 | 在仙人掌上跑DP
题目: 求仙人掌直径 http://www.lydsy.com/JudgeOnline/problem.php?id=1023 题解: 首先给出仙人掌的定义:满足所有的边至多在一个环上的无向联通图 我 ...
- BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】
1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 3236 Solved: 1651 [Submit] ...
- 一个acm过来人的心得
刻苦的训练我打算最后稍微提一下.主要说后者:什么是有效地训练? 我想说下我的理解. 很多ACMer入门的时候,都被告知:要多做题,做个500多道就变牛了.其实,这既不是充分条件.也不会是 ...