题目描述

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。

宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1 次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。

获取第 i 种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi 可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。

假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

输入输出格式

输入格式:

第一行为两个正整数k 和n,即宝物的数量和种类。以下n行分别描述一种

宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各

宝物编号为1到n),以0结尾。

输出格式:

输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

输入输出样例


输入样例#1:

1 2
1 0
2 0

输出样例#1:

1.500000


输入样例#2:

6 6
12 2 3 4 5 0
15 5 0
-2 2 4 5 0
-11 2 5 0
5 0
1 2 4 5 0

输出样例#2:

10.023470


说明

1 <= k <= 100, 1 <= n <= 15,分值为[-106,106]内的整数。


题解

这是一道状压dp题,数据范围很小,只有15(很标准啊)

首先,解释一下题意,会有k个宝物掉下,共n种,所以每次每种宝物掉下的概率都是1/n,而题目最后说的最优策略是指这次掉下的宝物,你可以不选,这是因为它的贡献是负数且它对后面的宝物是没用的,平均情况是指每次掉下每种宝物的情况都是1/n,所以我们要将所得的期望得分/n,即

本轮期望=(上一轮期望+本轮得分)/n

而正向推的话可能会出现从合法情况推到不合法的情况,那么这种情况乱再推也是没用的,所以我们倒着推,保证统计结果时一定合法(听说最优策略的期望dp都是倒着推???),那么结果最后就保存在dp[1][0]

设dp[i][j]表示第i轮已经收集的宝物集合j的期望

那么状态转移方程就变成了这样

if(本宝物可以收集)

  dp[i][j]+=max(dp[i+1][j],dp[i+1][j|1<<(k-1)]+v[k])/n//v[]表示宝物价值

else

  dp[i][j]+=dp[i+1][j]/n;

 #include<bits/stdc++.h>
#define in(i) (i=read())
using namespace std;
int read()
{
int ans=,f=;
char i=getchar();
while(i<'' || i>'')
{
if(i=='-') f=-;
i=getchar();
}
while(i>='' && i<='')
{
ans=(ans<<)+(ans<<)+i-'';
i=getchar();
}
return ans*f;
}
int m,n;
int cur[];
int v[];
double dp[][];
int main()
{
in(m);in(n);
for(int i=;i<=n;i++)
{
in(v[i]);
int u;
in(u);
while(u)
{
cur[i]|=<<(u-);
in(u);
}
}
int tot=<<n;
for(int i=m;i>=;i--)
{
for(int j=;j<tot;j++)
{
for(int k=;k<=n;k++)
{
if((cur[k]&j)==cur[k]) dp[i][j]+=max(dp[i+][j],dp[i+][j|<<(k-)]+v[k])/n;
else dp[i][j]+=dp[i+][j]/n;
}
// dp[i][j]/=n;
}
}
printf("%0.6lf\n",dp[][]);
return ;
}
 #include<bits/stdc++.h>
#define in(i) (i=read())
using namespace std;
int read()
{
int ans=,f=;
char i=getchar();
while(i<'' || i>'')
{
if(i=='-') f=-;
i=getchar();
}
while(i>='' && i<='')
{
ans=(ans<<)+(ans<<)+i-'';
i=getchar();
}
return ans*f;
}
int m,n;
int cur[];
int v[];
double dp[][];
int main()
{
in(m);in(n);
for(int i=;i<=n;i++)
{
in(v[i]);
int u;
in(u);
while(u)
{
cur[i]|=<<(u-);
in(u);
}
}
int tot=<<n;
for(int i=m;i>=;i--)
{
for(int j=;j<tot;j++)
{
for(int k=;k<=n;k++)
{
if((cur[k]&j)==cur[k]) dp[i][j]+=max(dp[i+][j],dp[i+][j|<<(k-)]+v[k])/n;
else dp[i][j]+=dp[i+][j]/n;
}
// dp[i][j]/=n;
}
}
printf("%0.6lf\n",dp[][]);
return ;

SCOI2008奖励关 [状压dp]的更多相关文章

  1. 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

    [BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

  2. B1076 [SCOI2008]奖励关 状压dp&&期望dp

    这个题的n<15,一看就是状压dp.但是状态不是很好想.f[][]存i关的状态j. 这个题另一个关键思想在于倒推,我一开始想的是正推,但是只能记忆化了. 题干: 题目描述 你正在玩你最喜欢的电子 ...

  3. [BZOJ1076][SCOI2008]奖励关 状压dp

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3070  Solved: 1595[Submit][Statu ...

  4. BZOJ1076:[SCOI2008]奖励关(状压DP,期望)

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  5. 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)

    题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...

  6. 洛谷P2473奖励关——状压DP

    题目:https://www.luogu.org/problemnew/show/P2473 还是对DP套路不熟悉... 像这种前面影响后面,而后面不影响前面的问题就应该考虑倒序递推: 看n只有15那 ...

  7. [SCOI2008]奖励关 - 状压动规 - 概率与期望

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝 ...

  8. 【洛谷】2473:[SCOI2008]奖励关【期望DP(倒推)】

    P2473 [SCOI2008]奖励关 题目背景 08四川NOI省选 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不 ...

  9. [SCOI2008]奖励关(期望dp)

    你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝 ...

随机推荐

  1. poj2230 欧拉回路

    http://poj.org/problem?id=2230 Description Bessie's been appointed the new watch-cow for the farm. E ...

  2. 【Java】关于Spring框架的总结 (一)

    本文总结一些关于Spring框架的理解,注意点及基础操作.如果有不对的地方,欢迎批评和建议.大家一起努力吧! Spring 框架简介 Spring 是一个开源框架,是为了解决企业应用程序开发复杂性而创 ...

  3. Javaweb——四则运算---18.11.01

    ---恢复内容开始--- test.jsp <%@ page language="java" contentType="text/html; charset=utf ...

  4. HBase 高级架构解析

    整体框架 使用 ZooKeeper 框架协助 RegionServer(类似于HDFS的nodemanager)用户请求从 Client 到 Zookeeper 进行判断数据属于哪一个 Region ...

  5. Intellij Idea 2016服务破解方法

    技术交流群:233513714 第一种破解方法 我使用的是官网下载的idea Ultimate版,也就是任何功能不受限制的版本,但是这个版本安装过后只能免费使用一个月. 当你的idea出现这种情况 也 ...

  6. Vue-router使用

    Vue路由:--------------------------------------------------------1 .Vue-rouer入门2 .子路由3 .路由传参4 .多路由区域操作5 ...

  7. 一个极为简单的requirejs实现

    require和 sea的源码分析,我之前的博客有写过, 今天我想分享的是一个很简单的核心代码(不带注释和空行大概60行), 没有容错判断. require.js require函数实现用一句话概括: ...

  8. Android AppWidget偶尔无响应原因及解决办法

    Android AppWidget偶尔会出现无响应问题,如按钮点击失效,数据不更新等等. 测试后发现,一般出现在手机用清理工具(或系统自己)清理后发生,或手机重启后发生. 目前经过测试,找到的办法是把 ...

  9. .netcore centos环境搭建实战

    步骤 1. 安装VMware Workstation 下载地址:https://my.vmware.com/cn/web/vmware/info/slug/desktop_end_user_compu ...

  10. jdk8 新特性stream().map()

    1.大写字符串列表 1.1 简单的Java示例将Strings列表转换为大写 TestJava8.java package com.mkyong.java8; import java.util.Arr ...