原文链接地址:http://blog.csdn.net/djinglan/article/details/8425768

下面介绍在C/C++里面使用的可变参数函数。
先说明可变参数是什么,先回顾一下C++里面的函数重载,如果重复给出如下声明:

int func();
int func(int);
int func(float);
int func(int, int);
...

这样在调用相同的函数名 func 的时候,编译器会自动识别入参列表的格式,从而调用相对应的函数体。

但这样的方法毕竟有限,试想一下我们假如想定义一个函数,我们在调用之前(在运行期之前)根本不知道我到底要调用几个参数,并且不知道这些参数是个什么类型,例如我们想定义一个函数:

int max(int n, ...);

用来返回一串随意长度输入参数的最大值,例如调用

max(3, 10, 20, 30)的时候,可以返回(n=3)个数 10,20,30 的最大值30。

并且还可以接受任意个参数的输入,例如:

max(6, 20, 40, 10, 50, 30, 40)也应该是被接受的,返回最大值50。

这怎么达到呢?

其实这样的例子我们肯定见过,最典型的就是 printf 函数,可以看 printf 函数的原形:

int printf(char*, ...);

它接受一个格式字符串,并且后面跟随任意指定的参数,根据实际需要而确定入参的个数。

实际上它的实现要依赖于一个标准 C 库 <stdarg.h>,stdandard argument(标准参数) 的意思。下面先稍为介绍一下 <stdarg.h>,或者在 C++ 中的 <cstdarg> 的功效:

这实际上是一组初始化和调用可变参数的宏,下面先介绍一下可变参数表的调用形式以及原理:

首先是参数的内存存放格式:参数存放在内存的堆栈段中,在执行函数的时候,从最后一个开始入栈。因此栈底高地址,栈顶低地址,举个例子如下:

void func(int x, float y, char z);

那么,调用函数的时候,实参 char z 先进栈,然后是 float y,最后是 int x,因此在内存中变量的存放次序是 x->y->z,因此,从理论上说,我们只要探测到任意一个变量的地址,并且知道其他变量的类型,通过指针移位运算,则总可以顺藤摸瓜找到其他的输入变量。

然后是可变入参表格式,省略的参数用 ... 代替,但必须注意:

1. 只能有一个 ... 并且它必须是最后一个参数;

2. 不要只用一个 ... 作为所有的参数,因为从后面可以知道,这样你无法确定入参表的地址。

举个例子,声明函数如下:

void func(int x, int y, ...);

然后调用:func(3, 5, 'c', 2.1f, 6);

于是在调用参数的时候,编译器则不会检查实际输入的是什么参数,只管把所有参数按照上面描述的方法,变成实参堆放在内存中,在本例中,内存中依次存放 x=3, y=5, 'c', 2.1f, 6

但是有一个需要注意的地方,这些东西只是紧挨着堆放在内存中,于是想要正确调用这些参数,必须知道他们确切的类型,并且我们也关心这个参数表实际的长度,然而不幸的是,这些我们无从得知。因此,这个解决办法决不是高明的,从某种程度上说,这甚至是一个严重的漏洞。因此,C++ 很不提倡去使用它。

不过缺点归缺点,万不得已的时候我们还是得用,但是我们对里面输入变量的时候,应该对入参的类型有一个清醒的认识,否则这样的操作是很危险的。

下面是 <stdarg.h> 对上面这一个思路的实现,里面重要的几个宏定义如下:

typedef char* va_list;
void va_start ( va_list ap, prev_param ); /* ANSI version */
type va_arg ( va_list ap, type );
void va_end ( va_list ap );

其中,va_list 是一个字符指针,可以理解为指向当前参数的一个指针,取参必须通过这个指针进行。

<Step 1> 在调用参数表之前,应该定义一个 va_list 类型的变量,以供后用(下面假设这个 va_list 类型变量被定义为ap);

<Step 2> 然后应该对 ap 进行初始化,让它指向可变参数表里面的第一个参数,这是通过 va_start 来实现的,第一个参数是 ap 本身,第二个参数是在变参表前面紧挨着的一个变量;

<Step 3> 然后是获取参数,调用 va_arg,它的第一个参数是 ap,第二个参数是要获取的参数的指定类型,然后返回这个指定类型的值,并且把 ap 的位置指向变参表的下一个变量位置;

<Step 4> 获取所有的参数之后,我们有必要将这个 ap 指针关掉,以免发生危险,方法是调用 va_end,他是输入的参数 ap 置为 NULL,应该养成获取完参数表之后关闭指针的习惯。

例如开始的例子 int max(int n, ...); 其函数内部应该如此实现:

int max(int n, ...) {                   // 定参 n 表示后面变参数量,定界用,输入时切勿搞错
va_list ap; // 定义一个 va_list 指针来访问参数表
va_start(ap, n); // 初始化 ap,让它指向第一个变参
int maximum = -0x7FFFFFFF; // 这是一个最小的整数
int temp;
for(int i = 0; i < n; i++) {
temp = va_arg(ap, int); // 获取一个 int 型参数,并且 ap 指向下一个参数
if(maximum < temp) maximum = temp;
}
va_end(ap); // 善后工作,关闭 ap
return maximum;
}
// 在主函数中测试 max 函数的行为(C++ 格式)
int main() {
cout << max(3, 10, 20, 30) << endl;
cout << max(6, 20, 40, 10, 50, 30, 40) << endl;
}

基本用法阐述至此,可以看到,这个方法存在两处极严重的漏洞:其一,输入参数的类型随意性,使得参数很容易以一个不正确的类型获取一个值(譬如输入一个float,却以int型去获取他),这样做会出现莫名其妙的运行结果;其二,变参表的大小并不能在运行时获取,这样就存在一个访问越界的可能性,导致后果严重的 RUNTIME ERROR。

另外,<stdarg.h> 的内部实现形式在这处不再加说明,如果有需要可以参考下面的两个连接(感谢他们的作者)。

http://www.cndw.com/tech/program/2006051065821.asp

http://blog.csdn.net/wzwind/archive/2007/06/26/1666518.aspx

作为建议,在 C++ 环境中尽量不要使用这种方法,如有需要,尽量先考虑使用类或者重载来代替,这样可以很好地弥补这种方法的漏洞。

全文完感谢读者,ELF原创,转载请注明出处

 

***********************************************************************************************

 

一.   何谓可变参数   
  

int   printf(   const   char*   format,   ...);

  这是使用过C语言的人所再熟悉不过的printf函数原型,它的参数中就有固定参数format和可变参数(用”…”表示).   而我们又可以用各种方式来调用printf,如:  
  printf("%d",value);    
  printf("%s",str);    
  printf("the   number   is   %d   ,string   is:%s",   value,   str);   
二.实现原理

C语言用宏来处理这些可变参数。这些宏看起来很复杂,其实原理挺简单,就是根据参数入栈的特点从最靠近第一个可变参数的固定参数开始,依次获取每个可变参数的地址。下面我们来分析这些宏。在VC中的stdarg.h头文件中,针对不同平台有不同的宏定义,我们选取X86平台下的宏定义:   

typedef   char   *va_list;
/*把va_list被定义成char*,这是因为在我们目前所用的PC机上,字符指针类型可以用来存储内存单元地址。而在有的机器上va_list是被定义成void*的*/
#define _INTSIZEOF(n) ( (sizeof(n) + sizeof(int) - 1) & ~(sizeof(int) - 1) )
/*_INTSIZEOF(n)宏是为了考虑那些内存地址需要对齐的系统,从宏的名字来应该是跟sizeof(int)对齐。一般的sizeof(int)=4,也就是参数在内存中的地址都为4的倍数。比如,如果sizeof(n)在1-4之间,那么_INTSIZEOF(n)=4;如果sizeof(n)在5-8之间,那么_INTSIZEOF(n)=8。*/
#define va_start(ap,v)( ap = (va_list)&v + _INTSIZEOF(v) )
/*va_start的定义为 &v+_INTSIZEOF(v) ,这里&v是最后一个固定参数的起始地址,再加上其实际占用大小后,就得到了第一个可变参数的起始内存地址。所以我们运行va_start(ap, v)以后,ap指向第一个可变参数在的内存地址*/
#define va_arg(ap,t) ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) )
/*这个宏做了两个事情,
①用用户输入的类型名对参数地址进行强制类型转换,得到用户所需要的值
②计算出本参数的实际大小,将指针调到本参数的结尾,也就是下一个参数的首地址,以便后续处理。*/
  #define va_end(ap) ( ap = (va_list)0 )
/*x86平台定义为ap=(char*)0;使ap不再 指向堆栈,而是跟NULL一样.有些直接定义为((void*)0),这样编译器不会为va_end产生代码,例如gcc在linux的x86平台就是这样定义的. 在这里大家要注意一个问题:由于参数的地址用于va_start宏,所以参数不能声明为寄存器变量或作为函数或数组类型. */

 

  以下再用图来表示:  
  在VC等绝大多数C编译器中,默认情况下,参数进栈的顺序是由右向左的,因此,参数进栈以后的内存模型如下图所示:最后一个固定参数的地址位于第一个可变参数之下,并且是连续存储的。  
  |——————————————————————————|  
  |最后一个可变参数   |   ->高内存地址处  
  |——————————————————————————|  
  ...................  
  |——————————————————————————|  
  |第N个可变参数   |   ->va_arg(arg_ptr,int)后arg_ptr所指的地方,  
  |   |   即第N个可变参数的地址。  
  |———————————————   |    
  ………………………….  
  |——————————————————————————|  
  |第一个可变参数   |   ->va_start(arg_ptr,start)后arg_ptr所指的地方  
  |   |   即第一个可变参数的地址  
  |———————————————   |    
  |————————————————————————   ——|  
  |   |  
  |最后一个固定参数   |   ->   start的起始地址  
  |——————————————   —|   .................  
  |——————————————————————————   |  
  |   |  
  |———————————————   |->   低内存地址处  

三.printf研究  
  下面是一个简单的printf函数的实现,参考了中的156页的例子,读者可以结合书上的代码与本文参照。   

#include   "stdio.h"
#include "stdlib.h"
void myprintf(char* fmt, ...) //一个简单的类似于printf的实现,//参数必须都是int 类型
{
char* pArg=NULL; //等价于原来的va_list
char c;
pArg = (char*) &fmt; //注意不要写成p = fmt !!因为这里要对//参数取址,而不是取值
pArg += sizeof(fmt); //等价于原来的va_start
do
{
c =*fmt;
if (c != '%')
{
putchar(c); //照原样输出字符
}
else
{
//按格式字符输出数据
switch(*++fmt)
{
case 'd':
printf("%d",*((int*)pArg));
break;
case 'x':
printf("%#x",*((int*)pArg));
break;
default:
break;
}
pArg += sizeof(int); //等价于原来的va_arg
}
++fmt;
}while (*fmt != '/0');
pArg = NULL; //等价于va_end
return;
}
int main(int argc, char* argv[])
{
int i = 1234;
int j = 5678;
myprintf("the first test:i=%d",i,j);
myprintf("the secend test:i=%d; %x;j=%d;",i,0xabcd,j);
system("pause");
return 0;
}

  
  在intel+win2k+vc6的机器执行结果如下:  
  the   first   test:i=1234  
  the   secend   test:i=1234;   0xabcd;j=5678;  
  四.应用  
  求最大值:  

#include   //不定数目参数需要的宏
int max(int n,int num,...)
{
va_list x;//说明变量x
va_start(x,num);//x被初始化为指向num后的第一个参数
int m=num;
for(int i=1;i {
//将变量x所指向的int类型的值赋给y,同时使x指向下一个参数
int y=va_arg(x,int);
if(y>m)m=y;
}
va_end(x);//清除变量x
return m;
}
main()
{
printf("%d,%d",max(3,5,56),max(6,0,4,32,45,533));
}

在C/C++函数中使用可变参数的更多相关文章

  1. Python函数中的可变参数

    在Python函数中,还可以定义可变参数. 如:给定一组数字a,b,c……,请计算a2 + b2 + c2 + ……. 要定义出这个函数,我们必须确定输入的参数.由于参数个数不确定,我们首先想到可以把 ...

  2. C/C++函数中使用可变参数

    先说明可变参数是什么,先回顾一下C++里面的函数重载,如果重复给出如下声明: int func(); int func(int); int func(float); int func(int, int ...

  3. C函数和宏中的可变参数

    一:调用惯例 函数的调用方和被调用方对函数如何调用应该有统一的理解,否则函数就无法正确调用.比如foo(int n, int m),调用方如果认为压栈顺序是m,n,而foo认为压栈顺序是n, m,那么 ...

  4. 【转】C,C++中使用可变参数

    可变参数即表示参数个数可以变化,可多可少,也表示参数的类型也可以变化,可以是 int,double还可以是char*,类,结构体等等.可变参数是实现printf(),sprintf()等函数的关键之处 ...

  5. [C++]C,C++中使用可变参数

    可变参数即表示参数个数可以变化,可多可少,也表示参数的类型也可以变化,可以是int,double还可以是char*,类,结构体等等.可变参数是实现printf(),sprintf()等函数的关键之处, ...

  6. C语言中的可变参数-printf的实现原理

    C语言中的可变参数-printf的实现原理 在C/C++中,对函数参数的扫描是从后向前的.C/C++的函数参数是通过压入堆栈的方式来给函数传参数的(堆栈是一种先进后出的数据结构),最先压入的参数最后出 ...

  7. C# 中的可变参数方法(VarArgs)

    首先需要明确一点:这里提到的可变参数方法,指的是具有 CallingConventions.VarArgs 调用约定的方法,而不是包含 params 参数的方法.可以通过MethodBase.Call ...

  8. Java中的可变参数以及foreach语句

    Java中的可变参数的定义格式如下: 返回值类型  方法名称(类型 ... 参数名称){} foreach语句的格式如下: for ( 数据类型  变量名称 :数据名称){ ... } public ...

  9. linux中probe函数中传递的参数来源(上)

    点击打开链接 上一篇中,我们追踪了probe函数在何时调用,知道了满足什么条件会调用probe函数,但probe函数中传递的参数我们并不知道在何时定义,到底是谁定义的,反正不是我们在驱动中定义的(当然 ...

随机推荐

  1. 构建ExtJS 6.x程序

    构建ExtJS 6.x程序 ExtJS也有自己的打包工具 SenchaCmd,它用来生成构建ExtJS前端组织架构,最后打包发布生产,操控着前端整个开发生命周期,SenchaCmd依赖于JDK,所以要 ...

  2. C#截取两个字符串间的字符串问题

    string s = "我爱北京天安门和长城"; string s1 = "北京"; string s2 = "和"; int i = s. ...

  3. Java基础——继承和多态

    面向对象的编程允许从已经存在的类中定义新的类,这称为继承. 面向过程的范式重点在于方法的设计,而面向对象的范式将数据和方法结合在对象中.面向对象范式的软件设计着重于对象以及对象上的操作.面向对象的方法 ...

  4. Python Web开发中,WSGI协议的作用和实现原理详解

    首先理解下面三个概念: WSGI:全称是Web Server Gateway Interface,WSGI不是服务器,python模块,框架,API或者任何软件,只是一种规范,描述web server ...

  5. python2.7练习小例子(八)

        8):题目:输出 9*9 乘法口诀表.     程序分析:分行与列考虑,共9行9列,i控制行,j控制列.     程序源代码: #!/usr/bin/python # -*- coding: ...

  6. MSSQL如何查看当前数据库的连接数 【转】

    - [SQL Server]版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明 http://ai51av.blogbus.com/logs/52955622.html   如果我们发布 ...

  7. Deep Learning 之 最优化方法

    Deep Learning 之 最优化方法 2017年05月21日 22:18:40 阅读数:5910 写在前面本文主要是对Deep Learning一书最优化方法的总结,具体详细的算法,另起博文展开 ...

  8. 「暑期训练」「基础DP」 Monkey and Banana (HDU-1069)

    题意与分析 给定立方体(个数不限),求最多能堆叠(堆叠要求上方的方块严格小于下方方块)的高度. 表面上个数不限,问题是堆叠的要求决定了每个方块最多可以使用三次.然后就是对3n" role=& ...

  9. Python 3基础教程23-多维列表

    这里简单举例一个多维列表,多维看起来都很晕. # 多维列表 x = [ [5,6],[6,7],[7,2] ,[2,5] ,[4,9]] print(x) # 根据索引引用列表元素,例如打印[6,7] ...

  10. linux常用命令补充详细

    1.ls命令 就是list的缩写,通过ls 命令不仅可以查看linux文件夹包含的文件,而且可以查看文件权限(包括目录.文件夹.文件权限)查看目录信息等等 常用参数搭配: ls -a 列出目录所有文 ...