白书P171

对m,n!分解,质因子指数取min

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<string>
#include<sstream>
#include<vector>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
using namespace std;
const int maxn = 1e5+11;
typedef long long ll;
int n,m;
vector<int> p,k;
void chai(int n){
p.clear();k.clear();
int t=n;
for(int i=2;i*i<=n;i++){
if(t%i==0){
p.push_back(i);
k.push_back(1);
t/=i;
int pos=k.size()-1;
while(t%i==0){
k[pos]++;
t/=i;
}
}
}
if(t>1) p.push_back(t),k.push_back(1);
}
int main(){
int T,kase=0; cin>>T;
while(T--){
scanf("%d%d",&m,&n);
chai(m);
ll ans=1ll<<61;
for(int i=0;i<p.size();i++){
ll tmp=n,t=0;
while(tmp>1){
t+=tmp/p[i];
tmp/=p[i];
}
ans=min(t/k[i],ans);//not t!!!
}
cout<<"Case "<<++kase<<":"<<endl;
if(!ans) cout<<"Impossible to divide"<<endl;
else cout<<ans<<endl;
}
return 0;
}

UVA - 10780 唯一分解定理的更多相关文章

  1. UVa 1635 (唯一分解定理) Irrelevant Elements

    经过紫书的分析,已经将问题转化为求组合数C(n-1, 0)~C(n-1, n-1)中能够被m整除的个数,并输出编号(这n个数的编号从1开始) 首先将m分解质因数,然后记录下每个质因子对应的指数. 由组 ...

  2. UVa 10375 (唯一分解定理) Choose and divide

    题意: 求组合数C(p, q) / C(r, s)结果保留5为小数. 分析: 先用筛法求出10000以内的质数,然后计算每个素数对应的指数,最后再根据指数计算答案. #include <cstd ...

  3. UVA 10791 -唯一分解定理的应用

    #include<iostream> #include<stdio.h> #include<algorithm> #include<string.h> ...

  4. UVA - 11388 唯一分解定理

    题意:给出G和L,求最小的a使得gcd(a,b)=G,lcm(a,b)=L 显然a>=G,所以a取G,b要满足质因子质数为L的同次数,b取L //此处应有代码

  5. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  6. UVA.10791 Minimum Sum LCM (唯一分解定理)

    UVA.10791 Minimum Sum LCM (唯一分解定理) 题意分析 也是利用唯一分解定理,但是要注意,分解的时候要循环(sqrt(num+1))次,并要对最后的num结果进行判断. 代码总 ...

  7. Irrelevant Elements UVA - 1635 二项式定理+组合数公式+素数筛+唯一分解定理

    /** 题目:Irrelevant Elements UVA - 1635 链接:https://vjudge.net/problem/UVA-1635 题意:給定n,m;題意抽象成(a+b)^(n- ...

  8. UVA 10375 Choose and divide【唯一分解定理】

    题意:求C(p,q)/C(r,s),4个数均小于10000,答案不大于10^8 思路:根据答案的范围猜测,不需要使用高精度.根据唯一分解定理,每一个数都可以分解成若干素数相乘.先求出10000以内的所 ...

  9. UVa 10791 Minimum Sum LCM【唯一分解定理】

    题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...

随机推荐

  1. SpringMVC第二天

    SpringMVC第二天   框架课程 1. 课程计划 1.高级参数绑定 a) 数组类型的参数绑定 b) List类型的绑定 2.@RequestMapping注解的使用 3.Controller方法 ...

  2. MVC全局用户验证之HttpModule

    在请求进入到MVC的处理mcvHandler之前,请求先到达HttpModule,因此可以利用HttpModule做全局的用户验证. HttpModule MVC5之前的版本基于system.web. ...

  3. Working with WordprocessingML documents (Open XML SDK)

    Last modified: January 13, 2012 Applies to: Office 2013 | Open XML This section provides conceptual ...

  4. javascript总结10:JavaScript的Switch语句

    1 switch语句 的作用: switch 语句用于基于不同的条件来执行不同的动作. 每当满足一个变量条件,就会执行当前的case内容. break 关键字用于跳出switch代码块.会终止swit ...

  5. Highway Networks(高速路神经网络)

    Rupesh Kumar Srivastava (邮箱:RUPESH@IDSIA.CH)Klaus Greff (邮箱:KLAUS@IDSIA.CH)J¨ urgen Schmidhuber (邮箱: ...

  6. C#多线程编程实战1.7前台线程和后台线程

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  7. .NET中的程序集

    参考:http://blog.sina.com.cn/s/blog_7ade159d0102wmg9.html 程序集(Assembly,装配件,.NET程序集) 程序集是应用程序的部署单元,.NET ...

  8. firefox 59 无法使用 pac 代理上网

    最近装了 firefox,电脑配置不太高,chrome 太吃内存了. 但是发现 SwitchyOmega的 pac 模式无法工作,这篇文章提到了两个思路, 其中network.dns.disableI ...

  9. OpenResty 最佳实践 (2)

    此文已由作者汤晓静授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. lua 协程与 nginx 事件机制结合 文章前部分用大量篇幅阐述了 lua 和 nginx 的相关知识,包 ...

  10. 「TJOI2013」循环格

    题目链接 戳我 \(Solution\) 我们观察发现循环格要满足每个点的入度都为\(1\) 证明: 我们假设每个点的入读不一定为\(1\),那么必定有一个或多个点的入度为0,那么则不满足循环格的定义 ...