SPOJ DQUERY - D-query (莫队算法|主席树|离线树状数组)
DQUERY - D-query
Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query is a pair (i, j) (1 ≤ i ≤ j ≤ n). For each d-query (i, j), you have to return the number of distinct elements in the subsequence ai, ai+1, ..., aj.
Input
- Line 1: n (1 ≤ n ≤ 30000).
- Line 2: n numbers a1, a2, ..., an (1 ≤ ai ≤ 106).
- Line 3: q (1 ≤ q ≤ 200000), the number of d-queries.
- In the next q lines, each line contains 2 numbers i, j representing a d-query (1 ≤ i ≤ j ≤ n).
Output
- For each d-query (i, j), print the number of distinct elements in the subsequence ai, ai+1, ..., aj in a single line.
Example
Input
5
1 1 2 1 3
3
1 5
2 4
3 5 Output
3
2
3 题意:给你一段区间,q个询问,询问区间[l,r]有多少个不同的数字
思路: 这道题算是很有意思的一道数据结构题了。。解法很多:莫队,主席树,离线树状数组都可以。解法也不难。 莫队解法:
思路:这道题感觉就是直接莫队莽上就完事了,没有什么需要处理的,就维护下每个元素在当前区间出现的次数就好了。
实现代码:
#include<bits/stdc++.h>
using namespace std; const int M = 1e6 + ;
int a[M],num[M],vis[M],block,ans = ,n,m;
struct node{
int l,r,id;
bool operator < (const node &cmp) const{
if(l/block == cmp.l/block) return r < cmp.r;
return l/block < cmp.l/block;
}
}q[M]; void add(int x){
vis[a[x]]++;
if(vis[a[x]] == ) ans++;
} void del(int x){
vis[a[x]]--;
if(vis[a[x]] == ) ans--;
} int main()
{
scanf("%d",&n);
block = sqrt(n);
for(int i = ;i <= n;i ++){
scanf("%d",&a[i]);
}
scanf("%d",&m);
for(int i = ;i <= m;i ++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id = i;
}
sort(q+,q+m+);
int l = ,r = ;
for(int i = ;i <= m;i ++){
while(l < q[i].l) del(l),l++;
while(l > q[i].l) l--,add(l);
while(r < q[i].r) r++,add(r);
while(r > q[i].r) del(r),r--;
num[q[i].id] = ans;
}
for(int i = ;i <= m;i ++)
printf("%d\n",num[i]);
return ; }
ps:
使用莫队算法耗时为:270ms;
主席树解法:
我们将元素在序列中的地址建成主席树,如果这个元素没有出现过,那么就在这个位置上+1,如果这个元素出现过那就将这个元素上一次出现的位置-1,在当前位置+1;每棵线段树维护的都是1到当前
位置的不同元素的个数。
实现代码:
#include<bits/stdc++.h>
using namespace std; const int M = 3e4+;
const int Max = 1e6+;
int rs[M*],ls[M*],sum[M*],root[M*];
int a[M],idx;
int vis[Max],ret; void update(int old,int &k,int l,int r,int p,int c){
k = ++idx;
ls[k] = ls[old]; rs[k] = rs[old]; sum[k] = sum[old] + c;
if(l == r) return ;
int mid = (l + r) >> ;
if(p <= mid) update(ls[old],ls[k],l,mid,p,c);
else update(rs[old],rs[k],mid+,r,p,c);
} void query(int k,int l,int r,int p){
if(p == l){
ret += sum[k];
return ;
}
int mid = (l + r) >> ;
if(p <= mid) ret += sum[rs[k]],query(ls[k],l,mid,p);
else query(rs[k],mid+,r,p);
return ;
} int main()
{
int n,q;
scanf("%d",&n);
idx = ;
for(int i = ;i <= n;i ++) scanf("%d", &a[i]);
memset(vis,,sizeof(vis));
for(int i = ;i <= n;i ++){
int tmp = ;
if(!vis[a[i]]) update(root[i-],root[i],,n,i,);
else {
update(root[i-],tmp,,n,vis[a[i]],-);
update(tmp,root[i],,n,i,);
}
vis[a[i]] = i;
}
scanf("%d",&q);
while(q--){
int l,r;
scanf("%d %d",&l,&r);
ret = ;
query(root[r],,n,l);
printf("%d\n",ret);
}
return ;
}
ps:
主席树耗时为:200ms;
离线+树状数组
先离线下,对询问的r排序,以元素的下标作树状数组维护以r为右边界的区间不同元素的数量,遍历时如果当前元素没有出现,那么存在他的地址,并在树状数组对应下标+1,如果这个元素
之前已经出现过了,那么取消之前标记的点也就是将这个元素上一次出现的下标在树状数组中-1,变成0,然后再储存下当前元素最迟出现的下标,也就是当前点。
最后区间[l,r]之间不同的数量也就是sumR - sumL;
实现代码:
#include<bits/stdc++.h>
using namespace std; const int Max = 1e6+;
int c[Max],a[Max],n,m,ans[Max],mp[Max];
int lowbit(int x){
return x&(-x);
} int getsum(int x){
int sum = ;
while(x>){
sum += c[x];
x -= lowbit(x);
}
return sum;
} void add(int x,int value){
while(x<=n){
c[x] += value;
x += lowbit(x);
}
} struct node{
int l,r,id;
bool operator < (const node &cmp) const {
return r < cmp.r;
}
}q[Max]; int main()
{
scanf("%d",&n);
memset(mp,-,sizeof(mp));
for(int i = ; i <= n;i ++) scanf("%d",&a[i]);
scanf("%d",&m);
for(int i = ;i <= m;i ++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id = i;
}
sort(q+,q+m+);
int l = ;
for(int i = ;i <= m;i ++){
for(int j = l;j <= q[i].r;j ++){
if(mp[a[j]]!=-){
add(mp[a[j]],-);
}
add(j,);
mp[a[j]] = j;
}
l = q[i].r + ;
ans[q[i].id] = getsum(q[i].r) - getsum(q[i].l-);
} for(int i = ;i <= m;i ++){
printf("%d\n",ans[i]);
}
return ;
}
ps:
离线+树状数组耗时为:150ms
很明显这道题使用离线+树状数组的耗时比主席树和莫队要少很多。。且代码量也比较少;
SPOJ DQUERY - D-query (莫队算法|主席树|离线树状数组)的更多相关文章
- D-query SPOJ - DQUERY(模板莫队)
题意: 给定一个序列,询问m次,每次求出区间 [ L,R ] 有多少个不同数字. 套模板就好了...但我不大明白....我的写法为什么不行...唉... #include <iostream&g ...
- 【魔改】莫队算法+组合数公式 杭电多校赛4 Problem B. Harvest of Apples
http://acm.hdu.edu.cn/showproblem.php?pid=6333 莫队算法是一个离线区间分块瞎搞算法,只要满足:1.离线 2.可以O(1)从区间(L,R)更新到(L±1, ...
- BZOJ 1878 [SDOI2009]HH的项链 (主席树 或 莫队算法)
题目链接 HH的项链 这道题可以直接上主席树的模板 #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) ...
- 莫队算法学习笔记【BZOJ2038:小Z的袜子】【SPOJ3267:D-query】
很久以前傻乎乎地看来源奇怪的资料的时候被各种曼哈顿弄晕了. 然后现在学会的是分块方法.另新创一个分块方法. 让我们考虑这样一个区间询问问题…… 它有如下的性质: 0,n个数,Q个询问. 1,它没有修改 ...
- 「日常训练&知识学习」莫队算法(二):树上莫队(Count on a tree II,SPOJ COT2)
题意与分析 题意是这样的,给定一颗节点有权值的树,然后给若干个询问,每次询问让你找出一条链上有多少个不同权值. 写这题之前要参看我的三个blog:Codeforces Round #326 Div. ...
- SPOJ COT2 Count on a tree II 树上莫队算法
题意: 给出一棵\(n(n \leq 4 \times 10^4)\)个节点的树,每个节点上有个权值,和\(m(m \leq 10^5)\)个询问. 每次询问路径\(u \to v\)上有多少个权值不 ...
- HDU 6278 - Just h-index - [莫队算法+树状数组+二分][2018JSCPC江苏省赛C题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6278 Time Limit: 6000/3000 MS (Java/Others) Memory Li ...
- C++ 莫队算法(转)
胡小兔的良心莫队教程:莫队.带修改莫队.树上莫队 在开始学习莫队之前,照例先甩一道例题:BZOJ 1878 HH的项链. 题意:求区间内数的个数,相同的数只算一次. 在我关于这道题的上一篇题解中, ...
- Codeforces617 E . XOR and Favorite Number(莫队算法)
XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...
随机推荐
- 【转】PHP 类与对象
原文:http://blog.csdn.net/e421083458/article/details/8217650 1.类与对象 对象:实际存在该类事物中每个实物的个体.$a =new User() ...
- word导入导出自定义属性列表
Sub ExportCustom() ' ' ExportCustom 宏 ' 导出自定义属性到custom.txt ' Dim lFileNumber As Long Dim sFilePath A ...
- Android之基于小米天气的天气源库
大概去年的这个时候,有跟大家分享简洁天气这个应用. 该应用一開始使用的是中国天气网的数据,可是,由于须要反复多次请求server获取信息才干满足我们的需求,因此.后来我偷偷的将天气源更换成" ...
- Modelsim SE 和 Quartus II 编译器(综合器)的区别
当对目标模块进行RTL描述后,习惯先会用Modelsim做一下功能仿真.当我们写好Tensbench文件,直接在Modelsim SE中对源文件(design和Testbench)进行编译时,如果源文 ...
- 遍历目录删除指定MD5值的文件
工作需要实现一个查找出指定目录下md5值与excel表格中md5值相同的文件然后删掉的功能.我是这样做的:首先遍历指定目录,计算该目录下所有文件的md5值,以文件路径为key,md5值为value保存 ...
- Exp2 MAL_后门原理与实践 20155214
目录 Exp2 MAL_后门原理与实践 实验内容 通过nc反向连接创建后门 meterpreter应用 主要思路 知识点 启发 Exp2 MAL_后门原理与实践 本次实验操使用nc实现win,mac, ...
- 20155318 Exp1 PC平台逆向破解(5)M
20155318 Exp1 PC平台逆向破解(5)M 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入 ...
- Android开发——JobScheduler机制
年Google开发大会上指出,如果每个APP都使用这个API,那么可以节约15%到20%的电量. 2. JobScheduler拥有更多的触发选项 JobScheduler比AlarmManager ...
- EZ 2018 02 26 NOIP2018 模拟赛(一)
这次是校内OJ(HHHOJ)线上比赛,网址:http://211.140.156.254:2333/contest/51 (我去刚刚快写完了手贱关掉了) 这次总体难度也不高,T1&&T ...
- Voronoi图与Delaunay三角剖分
详情请见[ZJOI2018]保镖 题解随笔 - 99 文章 - 0 评论 - 112