离散化后,容易想到设f[i][j]为i节点权值为j的概率,不妨设j权值在左子树,则有f[i][j]=f[lson][j](pi·f[rson][1~j]+(1-pi)·f[rson][j~m])。

  考虑用线段树合并优化这个dp。记录前缀和,合并某节点时,若某棵线段树在该节点处为空,给另一棵线段树打上乘法标记即可。注意前缀和不要算成合并后的了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 300010
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,p[N],a[N],b[N],fa[N],root[N],t,ans,cnt;
struct data{int to,nxt;
}edge[N];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
struct data2{int l,r,x,lazy;
}tree[N<<];
void ins(int &k,int l,int r,int x)
{
if (!k) k=++cnt;tree[k].x=;
if (l==r) return;
int mid=l+r>>;
if (x<=mid) ins(tree[k].l,l,mid,x);
else ins(tree[k].r,mid+,r,x);
}
void update(int k,int x)
{
if (!k) return;
tree[k].x=1ll*tree[k].x*x%P;
if (tree[k].lazy) tree[k].lazy=1ll*tree[k].lazy*x%P;
else tree[k].lazy=x;
}
void down(int k){update(tree[k].l,tree[k].lazy),update(tree[k].r,tree[k].lazy),tree[k].lazy=;}
int query(int k,int l,int r,int x)
{
if (!k) return ;
if (l==r) return tree[k].x;
if (tree[k].lazy) down(k);
int mid=l+r>>;
if (x<=mid) return query(tree[k].l,l,mid,x);
else return query(tree[k].r,mid+,r,x);
}
int merge(int x,int y,int l,int r,int s0,int s1,int p)
{
if (tree[x].lazy) down(x);
if (tree[y].lazy) down(y);
if (!x||!y)
{
if (!x) x=y,swap(s0,s1);
update(x,(1ll*p*s1+1ll*(P+-p)*(P+-s1))%P);
return x;
}
if (l<r)
{
int mid=l+r>>;
tree[x].r=merge(tree[x].r,tree[y].r,mid+,r,(s0+tree[tree[x].l].x)%P,(s1+tree[tree[y].l].x)%P,p);
tree[x].l=merge(tree[x].l,tree[y].l,l,mid,s0,s1,p),
tree[x].x=(tree[tree[x].l].x+tree[tree[x].r].x)%P;
}
return x;
}
void dfs(int k)
{
int s=;
for (int i=p[k];i;i=edge[i].nxt)
dfs(edge[i].to),s++;
if (s==) ins(root[k],,m,a[k]);
else if (s==) root[k]=root[edge[p[k]].to];
else root[k]=merge(root[edge[p[k]].to],root[edge[edge[p[k]].nxt].to],,m,,,a[k]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5461.in","r",stdin);
freopen("bzoj5461.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++)
{
int x=read();
fa[i]=x,addedge(x,i);
}
for (int i=;i<=n;i++)
{
a[i]=read();
if (p[i]) a[i]=1ll*a[i]*%P;
else b[++m]=a[i];
}
sort(b+,b+m+);
for (int i=;i<=n;i++) if (!p[i]) a[i]=lower_bound(b+,b+m+,a[i])-b;
dfs();
for (int i=;i<=m;i++)
{
int x=query(root[],,m,i);
ans=(ans+1ll*i*b[i]%P*x%P*x)%P;
}
cout<<ans;
return ;
}

BZOJ5461 PKUWC2018Minimax(概率期望+线段树合并+动态规划)的更多相关文章

  1. [BZOJ5461][LOJ#2537[PKUWC2018]Minimax(概率DP+线段树合并)

    还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感 ...

  2. LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】

    LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...

  3. Codeforces 700E. Cool Slogans 字符串,SAM,线段树合并,动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF700E.html 题解 首先建个SAM. 一个结论:对于parent树上任意一个点x,以及它所代表的子树内任 ...

  4. 【BZOJ5469】[FJOI2018]领导集团问题(动态规划,线段树合并)

    [BZOJ5469][FJOI2018]领导集团问题(动态规划,线段树合并) 题面 BZOJ 洛谷 题解 题目就是让你在树上找一个最大的点集,使得两个点如果存在祖先关系,那么就要满足祖先的权值要小于等 ...

  5. loj2537 「PKUWC2018」Minimax 【概率 + 线段树合并】

    题目链接 loj2537 题解 观察题目的式子似乎没有什么意义,我们考虑计算出每一种权值的概率 先离散化一下权值 显然可以设一个\(dp\),设\(f[i][j]\)表示\(i\)节点权值为\(j\) ...

  6. LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)

    题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...

  7. BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)

    BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...

  8. LOJ2537 PKUWC2018 Minimax 树形DP、线段树合并

    传送门 题意:自己去看 首先可以知道,每一个点都有几率被选到,所以$i$与$V_i$的关系是确定了的. 所以我们只需要考虑每一个值的取到的概率. 很容易设计出一个$DP$:设$f_{i,j}$为在第$ ...

  9. bzoj 4631: 踩气球 线段树合并

    4631: 踩气球 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 265  Solved: 136[Submit][Status][Discuss] ...

随机推荐

  1. Android 配置从GitHub上下载下来的不太规则的源代码库,并保证程序正常运行

    用过github的朋友一定会发现,我们在github上下载下来的源代码(例子和库),放到eclipse中并不是总能正常运行的,它有可能会出现这样或者那样的错误,例如:找不到jar包,配置文件错误,R文 ...

  2. 在ASP.NET Core上实施每个租户策略的数据库

    在ASP.NET Core上实施每个租户策略的数据库 不定时更新翻译系列,此系列更新毫无时间规律,文笔菜翻译菜求各位看官老爷们轻喷,如觉得我翻译有问题请挪步原博客地址 本博文翻译自: http://g ...

  3. neo4j----创建索引

    创建索引 create index on:Student(name) 删除索引 drop index on:Student(name) 创建唯一索引 create constraint on (s:T ...

  4. kubespray -- 快速部署高可用k8s集群 + 扩容节点 scale.yaml

    主机 系统版本      配置       ip Mater.Node,ansible CentOS 7.2                                             4 ...

  5. ceph状态信息靠谱查询

    1)检查集群的状态汇总信息: [root@haha1 clouder]# ceph -s cluster 8e136e25-77ab-4e0b-b24b-232a7b466cfe health HEA ...

  6. Android开发环境的发展以及重装系统之后在myeclipse重配Android开发环境。

    android的开发环境早期要自己去去官网下SDK,ADT,AVD等.不仅在一开始要面临国内防火墙的阻拦,四处奔波之后都下载好了,还得自己Linked,可谓困难重重.随着android开发的火热,上面 ...

  7. LNMP搭建 源码包

    LNMP源码包搭建 linux    CentOS-6.5-x86_64-bin-DVD1 nginx   版本1.8.0  下载地址:http://nginx.org/en/download.htm ...

  8. Swift10大开源项目记录

    Alamofire : Swift编写的HTTP网络库,用于异步网络通信. Surge: Surge基于Accelerate框架开发,用于执行矩阵数学.数字信号处理以及图像处理等方面. SwiftyJ ...

  9. 2019年北航OO第2单元(电梯模拟)总结

    1 三次作业的设计策略 经过了上一单元的训练,我也积累了一些设计策略上的经验.在这一单元的一开始,我便尽可能地把问题中的各个功能实体区分开来,分别封装成类,以便于随后作业中新需求的加入.与此同时,我也 ...

  10. 网络对抗第一次实验——PC平台逆向破解(5)M

    网络对抗第一次实验--PC平台逆向破解(5)M 实践一 手工修改可执行文件,改变程序执行流程,直接跳转到getShell函数. 操作步骤: 获取实验用文件pwn1,复制,复制出来的文件改名为20155 ...