摘录ECCV2016部分文章,主要有Human pose esimation,  Human activiity / actions, Face alignment, Face detection & recognition & .. , Hand tracking, Eye, and Others.

以下为文章及标题(可能有错漏)

Human pose estimation:

[1]Towards Viewpoint Invariant 3DHuman Pose Estimation

Albert Haque, Boya Peng, Zelun Luo, Alexandre Alahi, Serena Yeung,and Li Fei-Fei

[2]Fast 6D Pose Estimation from aMonocular Image UsingHierarchical Pose Trees

Yoshinori Konishi, Yuki Hanzawa, Masato Kawade,and Manabu Hashimoto

[3]Keep It SMPL: AutomaticEstimation of 3D Human Pose and Shapefrom a SingleImage

Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler,Javier Romero, and Michael J. Black

[4] Zoom Better to See Clearer: Human and Object Parsing withHierarchicalAuto-Zoom Net

Fangting Xia, PengWang, Liang-Chieh Chen, and Alan L. Yuille

[5] A Sequential Approach to 3D Human Pose Estimation: Separationof Localization and Identification of Body Joints

Ho Yub Jung, YuminSuh, Gyeongsik Moon, and Kyoung Mu Lee

[6]DeeperCut: A Deeper, Stronger,and Faster Multi-person PoseEstimation Model

Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres,Mykhaylo Andriluka, and Bernt Schiele

[7]Human Attribute Recognition byDeep Hierarchical Contexts

Yining Li, Chen Huang, Chen Change Loy, and Xiaoou Tang

[8]Human Pose Estimation UsingDeep Consensus Voting .

Ita Lifshitz, Ethan Fetaya, and Shimon Ullman

[9]Human Pose Estimation viaConvolutional Part Heatmap Regression

Adrian Bulat and Georgios Tzimiropoulos

[10]Stacked Hourglass Networks forHuman Pose Estimation

Alejandro Newell, Kaiyu Yang, and Jia Deng

[11]Bayesian Image Based 3D PoseEstimation

Marta Sanzari, Valsamis Ntouskos, and Fiora Pirri

[12]Shape from Selfies: Human BodyShape Estimation Using CCARegression Forests

Endri Dibra, Cengiz Öztireli, Remo Ziegler, and Markus Gross

[13]Estimation of Human Body Shapein Motion with Wide Clothing

Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler,and Stefanie Wuhrer

[14]Chained Predictions UsingConvolutional Neural Networks

Georgia Gkioxari, Alexander Toshev, and Navdeep Jaitly

Human activity:

[1]Real-Time RGB-D ActivityPrediction by Soft Regression

Jian-Fang Hu, Wei-ShiZheng, Lianyang Ma, Gang Wang,and Jianhuang Lai

[2]Learning Models for Actionsand Person-Object Interactions with Transferto QuestionAnswering

Arun Mallya and Svetlana Lazebnik

[3]RNN Fisher Vectors for ActionRecognition and Image Annotation.

Guy Lev, Gil Sadeh, Benjamin Klein, and Lior Wolf

[4]Online Human Action DetectionUsing Joint Classification-RegressionRecurrent NeuralNetworks

Yanghao Li, Cuiling Lan, Junliang Xing, Wenjun Zeng, Chunfeng Yuan,and Jiaying Liu

[5]DAPs: Deep Action Proposalsfor Action Understanding

Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles,and Bernard Ghanem

[6]Spatio-Temporal LSTM withTrust Gates for 3D HumanAction Recognition

Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang

[7]Multi-region Two-Stream R-CNNfor Action Detection

Xiaojiang Peng and Cordelia Schmid

Face alignment:

[1]A Recurrent Encoder-DecoderNetwork for Sequential Face Alignment

Xi Peng, Rogerio S. Feris, Xiaoyu Wang, and Dimitris N. Metaxas

[2]Robust Facial LandmarkDetection via Recurrent Attentive-RefinementNetworks

Shengtao Xiao, Jiashi Feng, Junliang Xing, Hanjiang Lai,Shuicheng Yan, and Ashraf Kassim

[3]Deep Deformation Network forObject Landmark Localization

Xiang Yu, Feng Zhou, and ManmohanChandraker

[4]Joint Face Alignment and 3DFace Reconstruction

Feng Liu, Dan Zeng, Qijun Zhao, and Xiaoming Liu

[5]Robust Face Alignment Using aMixture of Invariant Experts

Oncel Tuzel, Tim K. Marks, and Salil Tambe

Face detection & recognition& …:

[1]MOON: A Mixed Objective Optimization Network for the Recognitionof Facial Attributes

Ethan M. Rudd, Manuel Günther, and Terrance E. Boult

[2]Supervised Transformer Networkfor Efficient Face Detection

Dong Chen, Gang Hua,Fang Wen, and Jian Sun

[3]Ultra-Resolving Face Images byDiscriminative Generative Networks

Xin Yu and Fatih Porikli

[4]Do We Really Need to CollectMillions of Faces for EffectiveFace Recognition?

Iacopo Masi, Anh Tuấn Trần, Tal Hassner,Jatuporn Toy Leksut,and Gérard Medioni

[5]Deep Cascaded Bi-Network forFace Hallucination

Shizhan Zhu, SifeiLiu, Chen Change Loy, and Xiaoou Tang

[6]Real-Time Facial Segmentationand Performance Capture from RGB Input

Shunsuke Saito, Tianye Li, and Hao Li

[7]Cascaded Continuous Regressionfor Real-Time Incremental Face Tracking

Enrique Sánchez-Lozano, Brais Martinez, Georgios Tzimiropoulos,and Michel Valstar

[8]MS-Celeb-1M: A Dataset andBenchmark for Large-ScaleFace Recognition

Yandong Guo, LeiZhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao

[9]Joint Face RepresentationAdaptation and Clustering in Videos.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang

[10]Grid Loss: Detecting OccludedFaces

Michael Opitz, Georg Waltner, Georg Poier, Horst Possegger,and Horst Bischof

[11]Face Detection with End-to-EndIntegration of a ConvNet and a 3D Model

Yunzhu Li, BenyuanSun, Tianfu Wu, and Yizhou Wang

[12]Face Recognition from MultipleStylistic Sketches: Scenarios, Datasets,and Evaluation

Chunlei Peng,Nannan Wang, Xinbo Gao, and Jie Li

[13]Fast Face Sketch Synthesis viaKD-Tree Search

Yuqian Zhang,Nannan Wang, Shengchuan Zhang, Jie Li,and Xinbo Gao

Eye:

[1]A 3D Morphable Eye RegionModel for Gaze Estimation

Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency,Peter Robinson, and Andreas Bulling

Hand:

[1]Real-Time Joint Tracking of aHand Manipulating an Objectfrom RGB-D Input

Srinath Sridhar, Franziska Mueller, Michael Zollhöfer, Dan Casas,Antti Oulasvirta, and Christian Theobalt

[2]Spatial Attention Deep Netwith Partial PSO for Hierarchical HybridHand PoseEstimation

Qi Ye, Shanxin Yuan, and Tae-Kyun Kim

[3]Hand Pose Estimation fromLocal Surface Normals

Chengde Wan, AngelaYao, and Luc Van Gool

Others:

[1]DOC: Deep OCclusion Estimationfrom a Single Image.

Peng Wang and AlanYuille

[2]Convolutional OrientedBoundaries

Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez,and Luc Van Gool

[3]Superpixel ConvolutionalNetworks Using Bilateral Inceptions

Raghudeep Gadde, VarunJampani, Martin Kiefel, Daniel Kappler,and Peter V.Gehler

[4]SDF-2-SDF: Highly Accurate 3DObject Reconstruction

Miroslava Slavcheva,Wadim Kehl, Nassir Navab, and Slobodan Ilic

[5]Learning to Hash with BinaryDeep Neural Network

Thanh-Toan Do,Anh-Dzung Doan, and Ngai-Man Cheung

[6]Going Further with Point PairFeatures

Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar,and Kurt Konolige

[7]Automatic Attribute Discoverywith Neural Activations

SirionVittayakorn, Takayuki Umeda, Kazuhiko Murasaki, Kyoko Sudo,Takayuki Okatani, and Kota Yamaguchi

ECCV 2016 paper list的更多相关文章

  1. Learning to Track at 100 FPS with Deep Regression Networks ECCV 2016 论文笔记

    Learning to Track at 100 FPS with Deep Regression Networks   ECCV 2016  论文笔记 工程网页:http://davheld.git ...

  2. CVPR 2016 paper reading (2)

    1. Sketch me that shoe, Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales, Cheng Chan ...

  3. AAAI 2016 paper阅读

    本篇文章调研一些感兴趣的AAAI 2016 papers.科研要多读paper!!! Learning to Generate Posters of Scientific Papers,Yuting ...

  4. CVPR 2016 paper reading (6)

    1. Neuroaesthetics in fashion: modeling the perception of fashionability, Edgar Simo-Serra, Sanja Fi ...

  5. CVPR 2016 paper reading (3)

    DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations, Ziwei Liu, Pin ...

  6. Deep Image Retrieval: Learning global representations for image search In ECCV, 2016学习笔记

    - 论文地址:https://arxiv.org/abs/1604.01325 contribution is twofold: (i) we leverage a ranking framework ...

  7. Summary on Visual Tracking: Paper List, Benchmarks and Top Groups

    Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...

  8. Ubuntu_ROS中应用kinect v2笔记

    Ubuntu_ROS中应用kinect v2笔记 个人觉得最重要的资料如下: 1. Microsoft Kinect v2 Driver Released http://www.ros.org/new ...

  9. (转)Multi-Object-Tracking-Paper-List

    Multi-Object-Tracking-Paper-List 2018-08-07 22:18:05 This blog is copied from: https://github.com/Sp ...

随机推荐

  1. @1-4使用Xpath解析豆瓣短评

    使用Xpath解析豆瓣短评 Python爬虫(入门+进阶)     DC学院 本节课程主要介绍解析神器Xpath是什么.Xpath如何安装及使用,以及使用实际的例子讲解Xpath如何解析豆瓣短评的网页 ...

  2. Spark学习笔记-GraphX-1

    Spark学习笔记-GraphX-1 标签: SparkGraphGraphX图计算 2014-09-29 13:04 2339人阅读 评论(0) 收藏 举报  分类: Spark(8)  版权声明: ...

  3. spring 学习 一 spring 介绍

    Spring 是一个开源框架,是为了解决企业应用程序开发复杂性而创建的.框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为 J2EE 应用程序开发提供集成的框架. Spring ...

  4. 2019.01.19 bzoj5457: 城市(线段树合并)

    传送门 线段树合并菜题. 题意简述:给一棵树,每个节点有bib_ibi​个aia_iai​民族的人,问对于每棵子树,子树中哪个民族的人最多,有多少人. 思路: 直接上线段树合并,边合并边维护答案即可. ...

  5. 2018.11.17 hdu5829Rikka with Subset(ntt)

    传送门 nttnttntt基础题. 考虑计算每一个数在排名为kkk时被统计了多少次来更新答案. 这样的话,设anskans_kansk​表示所有数的值乘上排名为kkk的子集数的总和. 则ansk=∑i ...

  6. 如何在MYSQL下所有指定数据库名下执行SQL

    mysql下用户库比较多,都有统一的命名格式,希望在这些所有用户库执行脚本,更新数据,或者查询数据 可以采用以下存储过程实现 DROP PROCEDURE IF EXISTS `sp_execalld ...

  7. 安卓修改开机logo和开机动画的方法

    第一种和第二种方法亲测可用,安卓版本是4.2和安卓5.1均可.第二种方法待验证 以下三种方法 Android 开机其实总共会出现3个画面: 1.第一个就是 linux 系统启动,出现Linux小企鹅画 ...

  8. embeded_2_separate_sync

    //如果是8位的话,只选择低8位传输 //因为同步码也是可以自己设置,所以把同步码设置成parameter最好 module embeded_2_separate_sync( input clk, : ...

  9. struts2访问web资源

    通过ActionContext访问 public class TestActionContextAction { public String execute(){ //获取 ActionContext ...

  10. Silverlight4.0正式版(Silverlight4_Tools)离线安装

    1.从微软的网站下载Silverlight4_Tools.exe(或者http://download.csdn.net/detail/taomanman/4522848)2.执行Silverlight ...