ECCV 2016 paper list
摘录ECCV2016部分文章,主要有Human pose esimation, Human activiity / actions, Face alignment, Face detection & recognition & .. , Hand tracking, Eye, and Others.
以下为文章及标题(可能有错漏)
Human pose estimation:
[1]Towards Viewpoint Invariant 3DHuman Pose Estimation
Albert Haque, Boya Peng, Zelun Luo, Alexandre Alahi, Serena Yeung,and Li Fei-Fei
[2]Fast 6D Pose Estimation from aMonocular Image UsingHierarchical Pose Trees
Yoshinori Konishi, Yuki Hanzawa, Masato Kawade,and Manabu Hashimoto
[3]Keep It SMPL: AutomaticEstimation of 3D Human Pose and Shapefrom a SingleImage
Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler,Javier Romero, and Michael J. Black
[4] Zoom Better to See Clearer: Human and Object Parsing withHierarchicalAuto-Zoom Net
Fangting Xia, PengWang, Liang-Chieh Chen, and Alan L. Yuille
[5] A Sequential Approach to 3D Human Pose Estimation: Separationof Localization and Identification of Body Joints
Ho Yub Jung, YuminSuh, Gyeongsik Moon, and Kyoung Mu Lee
[6]DeeperCut: A Deeper, Stronger,and Faster Multi-person PoseEstimation Model
Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres,Mykhaylo Andriluka, and Bernt Schiele
[7]Human Attribute Recognition byDeep Hierarchical Contexts
Yining Li, Chen Huang, Chen Change Loy, and Xiaoou Tang
[8]Human Pose Estimation UsingDeep Consensus Voting .
Ita Lifshitz, Ethan Fetaya, and Shimon Ullman
[9]Human Pose Estimation viaConvolutional Part Heatmap Regression
Adrian Bulat and Georgios Tzimiropoulos
[10]Stacked Hourglass Networks forHuman Pose Estimation
Alejandro Newell, Kaiyu Yang, and Jia Deng
[11]Bayesian Image Based 3D PoseEstimation
Marta Sanzari, Valsamis Ntouskos, and Fiora Pirri
[12]Shape from Selfies: Human BodyShape Estimation Using CCARegression Forests
Endri Dibra, Cengiz Öztireli, Remo Ziegler, and Markus Gross
[13]Estimation of Human Body Shapein Motion with Wide Clothing
Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler,and Stefanie Wuhrer
[14]Chained Predictions UsingConvolutional Neural Networks
Georgia Gkioxari, Alexander Toshev, and Navdeep Jaitly
Human activity:
[1]Real-Time RGB-D ActivityPrediction by Soft Regression
Jian-Fang Hu, Wei-ShiZheng, Lianyang Ma, Gang Wang,and Jianhuang Lai
[2]Learning Models for Actionsand Person-Object Interactions with Transferto QuestionAnswering
Arun Mallya and Svetlana Lazebnik
[3]RNN Fisher Vectors for ActionRecognition and Image Annotation.
Guy Lev, Gil Sadeh, Benjamin Klein, and Lior Wolf
[4]Online Human Action DetectionUsing Joint Classification-RegressionRecurrent NeuralNetworks
Yanghao Li, Cuiling Lan, Junliang Xing, Wenjun Zeng, Chunfeng Yuan,and Jiaying Liu
[5]DAPs: Deep Action Proposalsfor Action Understanding
Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles,and Bernard Ghanem
[6]Spatio-Temporal LSTM withTrust Gates for 3D HumanAction Recognition
Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang
[7]Multi-region Two-Stream R-CNNfor Action Detection
Xiaojiang Peng and Cordelia Schmid
Face alignment:
[1]A Recurrent Encoder-DecoderNetwork for Sequential Face Alignment
Xi Peng, Rogerio S. Feris, Xiaoyu Wang, and Dimitris N. Metaxas
[2]Robust Facial LandmarkDetection via Recurrent Attentive-RefinementNetworks
Shengtao Xiao, Jiashi Feng, Junliang Xing, Hanjiang Lai,Shuicheng Yan, and Ashraf Kassim
[3]Deep Deformation Network forObject Landmark Localization
Xiang Yu, Feng Zhou, and ManmohanChandraker
[4]Joint Face Alignment and 3DFace Reconstruction
Feng Liu, Dan Zeng, Qijun Zhao, and Xiaoming Liu
[5]Robust Face Alignment Using aMixture of Invariant Experts
Oncel Tuzel, Tim K. Marks, and Salil Tambe
Face detection & recognition& …:
[1]MOON: A Mixed Objective Optimization Network for the Recognitionof Facial Attributes
Ethan M. Rudd, Manuel Günther, and Terrance E. Boult
[2]Supervised Transformer Networkfor Efficient Face Detection
Dong Chen, Gang Hua,Fang Wen, and Jian Sun
[3]Ultra-Resolving Face Images byDiscriminative Generative Networks
Xin Yu and Fatih Porikli
[4]Do We Really Need to CollectMillions of Faces for EffectiveFace Recognition?
Iacopo Masi, Anh Tuấn Trần, Tal Hassner,Jatuporn Toy Leksut,and Gérard Medioni
[5]Deep Cascaded Bi-Network forFace Hallucination
Shizhan Zhu, SifeiLiu, Chen Change Loy, and Xiaoou Tang
[6]Real-Time Facial Segmentationand Performance Capture from RGB Input
Shunsuke Saito, Tianye Li, and Hao Li
[7]Cascaded Continuous Regressionfor Real-Time Incremental Face Tracking
Enrique Sánchez-Lozano, Brais Martinez, Georgios Tzimiropoulos,and Michel Valstar
[8]MS-Celeb-1M: A Dataset andBenchmark for Large-ScaleFace Recognition
Yandong Guo, LeiZhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao
[9]Joint Face RepresentationAdaptation and Clustering in Videos.
Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang
[10]Grid Loss: Detecting OccludedFaces
Michael Opitz, Georg Waltner, Georg Poier, Horst Possegger,and Horst Bischof
[11]Face Detection with End-to-EndIntegration of a ConvNet and a 3D Model
Yunzhu Li, BenyuanSun, Tianfu Wu, and Yizhou Wang
[12]Face Recognition from MultipleStylistic Sketches: Scenarios, Datasets,and Evaluation
Chunlei Peng,Nannan Wang, Xinbo Gao, and Jie Li
[13]Fast Face Sketch Synthesis viaKD-Tree Search
Yuqian Zhang,Nannan Wang, Shengchuan Zhang, Jie Li,and Xinbo Gao
Eye:
[1]A 3D Morphable Eye RegionModel for Gaze Estimation
Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency,Peter Robinson, and Andreas Bulling
Hand:
[1]Real-Time Joint Tracking of aHand Manipulating an Objectfrom RGB-D Input
Srinath Sridhar, Franziska Mueller, Michael Zollhöfer, Dan Casas,Antti Oulasvirta, and Christian Theobalt
[2]Spatial Attention Deep Netwith Partial PSO for Hierarchical HybridHand PoseEstimation
Qi Ye, Shanxin Yuan, and Tae-Kyun Kim
[3]Hand Pose Estimation fromLocal Surface Normals
Chengde Wan, AngelaYao, and Luc Van Gool
Others:
[1]DOC: Deep OCclusion Estimationfrom a Single Image.
Peng Wang and AlanYuille
[2]Convolutional OrientedBoundaries
Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez,and Luc Van Gool
[3]Superpixel ConvolutionalNetworks Using Bilateral Inceptions
Raghudeep Gadde, VarunJampani, Martin Kiefel, Daniel Kappler,and Peter V.Gehler
[4]SDF-2-SDF: Highly Accurate 3DObject Reconstruction
Miroslava Slavcheva,Wadim Kehl, Nassir Navab, and Slobodan Ilic
[5]Learning to Hash with BinaryDeep Neural Network
Thanh-Toan Do,Anh-Dzung Doan, and Ngai-Man Cheung
[6]Going Further with Point PairFeatures
Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar,and Kurt Konolige
[7]Automatic Attribute Discoverywith Neural Activations
SirionVittayakorn, Takayuki Umeda, Kazuhiko Murasaki, Kyoko Sudo,Takayuki Okatani, and Kota Yamaguchi
ECCV 2016 paper list的更多相关文章
- Learning to Track at 100 FPS with Deep Regression Networks ECCV 2016 论文笔记
Learning to Track at 100 FPS with Deep Regression Networks ECCV 2016 论文笔记 工程网页:http://davheld.git ...
- CVPR 2016 paper reading (2)
1. Sketch me that shoe, Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales, Cheng Chan ...
- AAAI 2016 paper阅读
本篇文章调研一些感兴趣的AAAI 2016 papers.科研要多读paper!!! Learning to Generate Posters of Scientific Papers,Yuting ...
- CVPR 2016 paper reading (6)
1. Neuroaesthetics in fashion: modeling the perception of fashionability, Edgar Simo-Serra, Sanja Fi ...
- CVPR 2016 paper reading (3)
DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations, Ziwei Liu, Pin ...
- Deep Image Retrieval: Learning global representations for image search In ECCV, 2016学习笔记
- 论文地址:https://arxiv.org/abs/1604.01325 contribution is twofold: (i) we leverage a ranking framework ...
- Summary on Visual Tracking: Paper List, Benchmarks and Top Groups
Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...
- Ubuntu_ROS中应用kinect v2笔记
Ubuntu_ROS中应用kinect v2笔记 个人觉得最重要的资料如下: 1. Microsoft Kinect v2 Driver Released http://www.ros.org/new ...
- (转)Multi-Object-Tracking-Paper-List
Multi-Object-Tracking-Paper-List 2018-08-07 22:18:05 This blog is copied from: https://github.com/Sp ...
随机推荐
- @1-4使用Xpath解析豆瓣短评
使用Xpath解析豆瓣短评 Python爬虫(入门+进阶) DC学院 本节课程主要介绍解析神器Xpath是什么.Xpath如何安装及使用,以及使用实际的例子讲解Xpath如何解析豆瓣短评的网页 ...
- Spark学习笔记-GraphX-1
Spark学习笔记-GraphX-1 标签: SparkGraphGraphX图计算 2014-09-29 13:04 2339人阅读 评论(0) 收藏 举报 分类: Spark(8) 版权声明: ...
- spring 学习 一 spring 介绍
Spring 是一个开源框架,是为了解决企业应用程序开发复杂性而创建的.框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为 J2EE 应用程序开发提供集成的框架. Spring ...
- 2019.01.19 bzoj5457: 城市(线段树合并)
传送门 线段树合并菜题. 题意简述:给一棵树,每个节点有bib_ibi个aia_iai民族的人,问对于每棵子树,子树中哪个民族的人最多,有多少人. 思路: 直接上线段树合并,边合并边维护答案即可. ...
- 2018.11.17 hdu5829Rikka with Subset(ntt)
传送门 nttnttntt基础题. 考虑计算每一个数在排名为kkk时被统计了多少次来更新答案. 这样的话,设anskans_kansk表示所有数的值乘上排名为kkk的子集数的总和. 则ansk=∑i ...
- 如何在MYSQL下所有指定数据库名下执行SQL
mysql下用户库比较多,都有统一的命名格式,希望在这些所有用户库执行脚本,更新数据,或者查询数据 可以采用以下存储过程实现 DROP PROCEDURE IF EXISTS `sp_execalld ...
- 安卓修改开机logo和开机动画的方法
第一种和第二种方法亲测可用,安卓版本是4.2和安卓5.1均可.第二种方法待验证 以下三种方法 Android 开机其实总共会出现3个画面: 1.第一个就是 linux 系统启动,出现Linux小企鹅画 ...
- embeded_2_separate_sync
//如果是8位的话,只选择低8位传输 //因为同步码也是可以自己设置,所以把同步码设置成parameter最好 module embeded_2_separate_sync( input clk, : ...
- struts2访问web资源
通过ActionContext访问 public class TestActionContextAction { public String execute(){ //获取 ActionContext ...
- Silverlight4.0正式版(Silverlight4_Tools)离线安装
1.从微软的网站下载Silverlight4_Tools.exe(或者http://download.csdn.net/detail/taomanman/4522848)2.执行Silverlight ...