UVa 10870 Recurrences (矩阵快速幂)
题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340)。a1 , a2 ..... ad。f(1), f(2) ..... f(d),求 f(n) = a1*f(n-1) + a2*f(n-2) +....+ ad*f(n-d),计算f(n) % m。
析:很明显的矩阵快速幂,构造矩阵,
,然后后面的就很简单了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
//#define all 1,n,1
#define FOR(i,n,x) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.in", "r", stdin)
#define freopenw freopen("out.out", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 20 + 10;
const int maxm = 1e6 + 2;
const LL mod = 1000000007;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} struct Matrix{
int a[15][15], n;
void init(){ ms(a, 0); }
void toOne(){ FOR(i, n, 0) a[i][i] = 1; }
Matrix operator * (const Matrix &rhs){
Matrix res; res.n = n; res.init();
FOR(i, n, 0) FOR(j, n, 0) FOR(k, n, 0)
res.a[i][j] = (res.a[i][j] + (LL)a[i][k] * rhs.a[k][j]) % m;
return res;
}
}; Matrix fast_pow(Matrix x, int n){
Matrix res; res.n = x.n; res.init(); res.toOne();
while(n){
if(n&1) res = res * x;
x = x * x;
n >>= 1;
}
return res;
} int main(){
int d;
while(scanf("%d %d %d", &d, &n, &m) == 3 && n+m+d){
Matrix x, y; x.init(); y.init();
x.n = y.n = d;
for(int i = 0; i < d; ++i){
scanf("%d", &y.a[i][0]);
y.a[i][0] %= m;
}
for(int i = d-1; i >= 0; --i){
scanf("%d", &x.a[0][i]);
x.a[0][i] %= m;
}
if(n <= d){ printf("%d\n", x.a[0][d-n]); continue; }
for(int i = 0; i + 1 < d; ++i) y.a[i][i+1] = 1;
Matrix ans = x * fast_pow(y, n - d);
printf("%d\n", ans.a[0][0]);
}
return 0;
}
UVa 10870 Recurrences (矩阵快速幂)的更多相关文章
- uva 10870 递推关系矩阵快速幂模
Recurrences Input: standard input Output: standard output Consider recurrent functions of the follow ...
- UVA 10870 - Recurrences(矩阵高速功率)
UVA 10870 - Recurrences 题目链接 题意:f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), ...
- UVA10870 Recurrences —— 矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-10870 题意: 典型的矩阵快速幂的运用.比一般的斐波那契数推导式多了几项而已. 代码如下: #include <bit ...
- UVA - 10870 Recurrences 【矩阵快速幂】
题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...
- POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】
典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...
- uva 10518 - How Many Calls?(矩阵快速幂)
题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ...
- Tribonacci UVA - 12470 (简单的斐波拉契数列)(矩阵快速幂)
题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3); 求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cst ...
- UVA - 11149 (矩阵快速幂+倍增法)
第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio ...
- UVA10870—Recurrences(简单矩阵快速幂)
题目链接:https://vjudge.net/problem/UVA-10870 题目意思: 给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第 ...
随机推荐
- linux命令学习之:curl
curl命令是一个利用URL规则在命令行下工作的开源文件传输工具.它支持文件的上传和下载,所以是综合传输工具,但按传统,习惯称curl为下载工具.作为一款强力工具,curl支持包括HTTP.HTTPS ...
- WorkerMan源码分析 - 实现最简单的原型
之前一直认为workerman源码理解起很复杂,这段时间花了3个下午研究,其实只要理解 php如何守护化进程.信号.多进程.libevent扩展使用,对于如何实现就比较轻松了. 相关代码都在githu ...
- 微信小程序 页面跳转navigator与传递参数
页面之间跳转使用 navigator标签,wx.navigateTo ,wx.redirectTo 1.URL就是跳转的页面路径.上面代码中就是navigator目录下的navigator页面,tit ...
- mysql5.7 新增的json字段类型
一.我们先创建一个表,准备点数据 CREATE TABLE `json_test` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT 'I ...
- datatable to entiy list 不支持可空类型和枚举类型
还没有找到解决方法,暂存,希望有知道能告诉我.谢谢.
- js map/reduce
map 由于map()方法定义在JavaScript的Array中,我们调用Array的map()方法,传入我们自己的函数,就得到了一个新的Array作为结果: function pow(x) { r ...
- Git二进制文件冲突解决
Git二进制文件冲突解决 在我们合并分支的时候,如果两个分支都进行了修改那么就会产生合并冲突.对于非二进制文件的冲突解决,git会给出冲突的位置我们可以手动修改然后再commit.但是对于非二进制文件 ...
- POJ 2135.Farm Tour 消负圈法最小费用最大流
Evacuation Plan Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4914 Accepted: 1284 ...
- Linux下使用rsync最快速删除海量文件的方法
常用的删除命令rm -fr * 就不好用了,因为要等待的时间太长.所以必须要采取一些非常手段.我们可以使用rsync来实现快速删除大量文件. 1.先安装rsync: yum install rsyn ...
- Homestead 修改 Homestead.yaml 文件后 vagrant up 报错的问题
一般情况是 TAB 和空格的问题. 虽然表面看来,缩进是一致的. 但是 TAB 没能替换为空格,从而导致问题. 解决: $ sudo vim /etc/vim/vimrc.local syntax o ...