[SDOI2009]HH去散步 「矩阵乘法计数」
计数问题也许可以转化为矩阵乘法形式
比如若该题没有不能在一条边上重复走的条件限制,那么直接将邻接矩阵转化为矩阵乘法即可
故
矩阵乘法计数
对于计数问题,若可以将 \(n\) 个点表示成 \(n \times n\) 的矩阵,并且可以保证中途转移对象不会变化,即可用矩阵乘法计数
至于该题
那么考虑该题,加入了不能重复在一条边上走的限制,那么最简单的思想就是拆点,并且让改点屏蔽掉当前方向,但是如果考虑边,一条无向边可以拆成两条有向边,那拆出来的就比点少很多了,故考虑点边转化
那么只要在起始点加一条超级源边,同样矩阵乘法即可统计答案
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#define MOD 45989
using namespace std;
typedef long long LL;
const int MAXN = 50 + 10;
const int MAXM = 120 + 10;
struct LinkedForwardStar {
int to;
int next;
} ;
LinkedForwardStar Link[MAXM];
int Head[MAXN]= {0};
int size = 1;
void Insert (int u, int v) {
Link[++ size].to = v;
Link[size].next = Head[u];
Head[u] = size;
}
int N, M, K;
int st, ed;
struct Matrix {
LL a[MAXM][MAXM];
void init () {
for (int i = 1; i <= size; i ++)
for (int j = 1; j <= size; j ++)
a[i][j] = 0;
}
Matrix operator * (const Matrix& p) const {
Matrix newmat;
newmat.init ();
for (int i = 1; i <= size; i ++)
for (int j = 1; j <= size; j ++)
for (int k = 1; k <= size; k ++)
newmat.a[i][j] = (newmat.a[i][j] + a[i][k] * p.a[k][j] % MOD) % MOD;
return newmat;
}
} ;
Matrix mats, bem;
LL power (int p) {
while (p) {
if (p & 1)
mats = mats * bem;
bem = bem * bem;
p >>= 1;
}
LL ans = 0;
for (int i = Head[ed]; i; i = Link[i].next)
ans = (ans + mats.a[1][i ^ 1]) % MOD;
return ans;
}
int getnum () {
int num = 0;
char ch = getchar ();
while (! isdigit (ch))
ch = getchar ();
while (isdigit (ch))
num = (num << 3) + (num << 1) + ch - '0', ch = getchar ();
return num;
}
int main () {
N = getnum (), M = getnum (), K = getnum (), st = getnum () + 1, ed = getnum () + 1;
for (int i = 1; i <= M; i ++) {
int u = getnum () + 1, v = getnum () + 1;
Insert (u, v), Insert (v, u);
}
for (int i = Head[st]; i; i = Link[i].next)
bem.a[1][i] = 1;
for (int i = 2; i <= size; i ++) {
int v = Link[i].to;
for (int j = Head[v]; j; j = Link[j].next) {
if ((j ^ 1) == i)
continue;
bem.a[i][j] = 1;
}
}
for (int i = 1; i <= size; i ++)
mats.a[i][i] = 1;
LL ans = power (K);
cout << ans << endl;
return 0;
}
/*
4 5 3 0 0
0 1
0 2
0 3
2 1
3 2
*/
[SDOI2009]HH去散步 「矩阵乘法计数」的更多相关文章
- BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...
- 1875. [SDOI2009]HH去散步【矩阵乘法】
Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...
- BZOJ 1875: [SDOI2009]HH去散步(矩阵乘法)
首先,题意就把我们引向了矩阵乘法,注意边长m<=60,那么就按边建图,变成一个120个点的图,然后乱搞就行了。 PS:WA了N久改了3次终于A了QAQ CODE: #include<cst ...
- BZOJ.1875.[SDOI2009]HH去散步(DP 矩阵乘法)
题目链接 比较容易想到用f[i][j]表示走了i步后到达j点的方案数,但是题目要求不能走上一条走过的边 如果这样表示是不好转移的 可以考虑边,f[i][j]表示走了i步后到达第j条边的方案数,那么有 ...
- BZOJ 1875 [SDOI2009]HH去散步 ——动态规划 矩阵乘法
发现t非常大,所以大概就是快速幂一类的问题了, 然后根据k^3logn算了算,发现k大约是边数的时候复杂度比较合适. 发现比较麻烦的就是前驱的记录,所以直接把边看做点,不能走反向边,但是可以走重边,然 ...
- BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )
把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...
- BZOJ-1875 HH去散步 DP+矩阵乘法快速幂
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...
- [BZOJ 1875] [SDOI 2009] HH去散步【矩阵乘法】
题目链接:BZOJ - 1875 题目分析: 这道题如果去掉“不会立刻沿着刚刚走来的路走回”的限制,直接用邻接矩阵跑矩阵乘法就可以了.然而现在加了这个限制,建图的方式就要做一些改变.如果我们把每一条边 ...
- [bzoj1875][SDOI2009] HH去散步 [dp+矩阵快速幂]
题面 传送门 正文 其实就是让你求有多少条长度为t的路径,但是有一个特殊条件:不能走过一条边以后又立刻反着走一次(如果两次经过同意条边中间隔了别的边是可以的) 如果没有这个特殊条件,我们很容易想到dp ...
随机推荐
- Spark 实践——基于 Spark MLlib 和 YFCC 100M 数据集的景点推荐系统
1.前言 上接 YFCC 100M数据集分析笔记 和 使用百度地图api可视化聚类结果, 在对 YFCC 100M 聚类出的景点信息的基础上,使用 Spark MLlib 提供的 ALS 算法构建推荐 ...
- BZOJ 3170 松鼠聚会(切比雪夫距离转曼哈顿距离)
题意 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离. 思路 题目 ...
- poj1064 Cable master
Description Inhabitants of the Wonderland have decided to hold a regional programming contest. The J ...
- 【设计模式】—— 状态模式State
前言:[模式总览]——————————by xingoo 模式意图 允许一个对象在内部改变它的状态,并根据不同的状态有不同的操作行为. 例如,水在固体.液体.气体是三种状态,但是展现在我们面前的确实不 ...
- eclipse运行tomcat中发生异常重启后tomcat端口被占用
在任务管理器关闭javaw进程即可,一般此时会有两个以上javaw进程,关闭其中占用内存较少的那个 可用netstat -ano命令查看端口占用情况
- 【题解】Power Strings
题目描述 给定若干个长度小于等于10^6的字符串,询问每个字符串最多由多少个相同的子串重复连接而成.如:ababab,最多由3个ab连接而成. 输入输出格式 输入格式 若干行,每行一个字符串. 当读入 ...
- BZOJ2001 [Hnoi2010]City 城市建设 CDQ分治
2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec Memory Limit: 162 MB Description PS国是一个拥有诸多城市的大国,国王Lou ...
- 【BZOJ4870】组合数问题(动态规划,矩阵快速幂)
[BZOJ4870]组合数问题(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 显然直接算是没法做的.但是要求的东西的和就是从\(nk\)个物品中选出模\(k\)意义下恰好\(r\)个物品的方案数 ...
- HGOI NOIP模拟4 题解
NOIP国庆模拟赛Day5 题解 T1 马里奥 题目描述 马里奥将要参加 NOIP 了,他现在在一片大陆上,这个大陆上有着许多浮空岛,并且其中一座浮空岛上有一个传送门,马里奥想要到达传送门从而前往 N ...
- 洛谷 P1070 道路游戏 解题报告
P1070 道路游戏 题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有\(n\)个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依 ...