计数问题也许可以转化为矩阵乘法形式

比如若该题没有不能在一条边上重复走的条件限制,那么直接将邻接矩阵转化为矩阵乘法即可

矩阵乘法计数

对于计数问题,若可以将 \(n\) 个点表示成 \(n \times n\) 的矩阵,并且可以保证中途转移对象不会变化,即可用矩阵乘法计数

至于该题

那么考虑该题,加入了不能重复在一条边上走的限制,那么最简单的思想就是拆点,并且让改点屏蔽掉当前方向,但是如果考虑边,一条无向边可以拆成两条有向边,那拆出来的就比点少很多了,故考虑点边转化

那么只要在起始点加一条超级源边,同样矩阵乘法即可统计答案

代码

#include <iostream>
#include <cstdio>
#include <cstring> #define MOD 45989 using namespace std; typedef long long LL; const int MAXN = 50 + 10;
const int MAXM = 120 + 10; struct LinkedForwardStar {
int to; int next;
} ; LinkedForwardStar Link[MAXM];
int Head[MAXN]= {0};
int size = 1; void Insert (int u, int v) {
Link[++ size].to = v;
Link[size].next = Head[u]; Head[u] = size;
} int N, M, K;
int st, ed; struct Matrix {
LL a[MAXM][MAXM]; void init () {
for (int i = 1; i <= size; i ++)
for (int j = 1; j <= size; j ++)
a[i][j] = 0;
}
Matrix operator * (const Matrix& p) const {
Matrix newmat;
newmat.init ();
for (int i = 1; i <= size; i ++)
for (int j = 1; j <= size; j ++)
for (int k = 1; k <= size; k ++)
newmat.a[i][j] = (newmat.a[i][j] + a[i][k] * p.a[k][j] % MOD) % MOD;
return newmat;
}
} ;
Matrix mats, bem; LL power (int p) {
while (p) {
if (p & 1)
mats = mats * bem;
bem = bem * bem;
p >>= 1;
}
LL ans = 0;
for (int i = Head[ed]; i; i = Link[i].next)
ans = (ans + mats.a[1][i ^ 1]) % MOD;
return ans;
} int getnum () {
int num = 0;
char ch = getchar (); while (! isdigit (ch))
ch = getchar ();
while (isdigit (ch))
num = (num << 3) + (num << 1) + ch - '0', ch = getchar (); return num;
} int main () {
N = getnum (), M = getnum (), K = getnum (), st = getnum () + 1, ed = getnum () + 1;
for (int i = 1; i <= M; i ++) {
int u = getnum () + 1, v = getnum () + 1;
Insert (u, v), Insert (v, u);
}
for (int i = Head[st]; i; i = Link[i].next)
bem.a[1][i] = 1;
for (int i = 2; i <= size; i ++) {
int v = Link[i].to;
for (int j = Head[v]; j; j = Link[j].next) {
if ((j ^ 1) == i)
continue;
bem.a[i][j] = 1;
}
}
for (int i = 1; i <= size; i ++)
mats.a[i][i] = 1;
LL ans = power (K);
cout << ans << endl; return 0;
} /*
4 5 3 0 0
0 1
0 2
0 3
2 1
3 2
*/

[SDOI2009]HH去散步 「矩阵乘法计数」的更多相关文章

  1. BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法

    BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...

  2. 1875. [SDOI2009]HH去散步【矩阵乘法】

    Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...

  3. BZOJ 1875: [SDOI2009]HH去散步(矩阵乘法)

    首先,题意就把我们引向了矩阵乘法,注意边长m<=60,那么就按边建图,变成一个120个点的图,然后乱搞就行了。 PS:WA了N久改了3次终于A了QAQ CODE: #include<cst ...

  4. BZOJ.1875.[SDOI2009]HH去散步(DP 矩阵乘法)

    题目链接 比较容易想到用f[i][j]表示走了i步后到达j点的方案数,但是题目要求不能走上一条走过的边 如果这样表示是不好转移的 可以考虑边,f[i][j]表示走了i步后到达第j条边的方案数,那么有 ...

  5. BZOJ 1875 [SDOI2009]HH去散步 ——动态规划 矩阵乘法

    发现t非常大,所以大概就是快速幂一类的问题了, 然后根据k^3logn算了算,发现k大约是边数的时候复杂度比较合适. 发现比较麻烦的就是前驱的记录,所以直接把边看做点,不能走反向边,但是可以走重边,然 ...

  6. BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )

    把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...

  7. BZOJ-1875 HH去散步 DP+矩阵乘法快速幂

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...

  8. [BZOJ 1875] [SDOI 2009] HH去散步【矩阵乘法】

    题目链接:BZOJ - 1875 题目分析: 这道题如果去掉“不会立刻沿着刚刚走来的路走回”的限制,直接用邻接矩阵跑矩阵乘法就可以了.然而现在加了这个限制,建图的方式就要做一些改变.如果我们把每一条边 ...

  9. [bzoj1875][SDOI2009] HH去散步 [dp+矩阵快速幂]

    题面 传送门 正文 其实就是让你求有多少条长度为t的路径,但是有一个特殊条件:不能走过一条边以后又立刻反着走一次(如果两次经过同意条边中间隔了别的边是可以的) 如果没有这个特殊条件,我们很容易想到dp ...

随机推荐

  1. asp.net简述Web Forms开发模式

    详情请查阅:http://www.runoob.com/aspnet/aspnet-intro.html 1.Web Forms 是三种创建 ASP.NET 网站和 Web 应用程序的编程模式中的一种 ...

  2. python 十进制整数转换为任意进制(36以内)

    def baseN(num, b): return ((num == 0) and "0") or (baseN(num // b, b).lstrip("0" ...

  3. 动态sql防止报错的写法 当判断语句都是null时候会报错 需要手动添加一个判断语句 一般id都会存在

  4. oracle存储过程批量插入测试数据

    前几天测试中债时,自定义资产有一级类型和二级类型,一级类型下有很多分类,每个分类下又有很多二级分类,而要做的是每种类型都要建立一个自定义资产,并做一笔交易,然后测试是否出值,于是写了一个存储过程批量插 ...

  5. 【ARC076D/F】Exhausted?

    Description ​ 题目链接 Solution ​ 场上尝试使用优化建图网络流实现,结果T到怀疑人生. ​ 鉴于这是个匹配问题,考虑用贪心做一下. ​ 先退一步,想一下如果每一个人只有\([1 ...

  6. Docker镜像加速==》阿里云加速器

    1.使用阿里云加速器加快获取docker官方的镜像 步骤一:如果没有阿里云账号,需要注册阿里云开发账号 https://dev.aliyun.com/ 步骤二:进入加速器页面获取加速信息 https: ...

  7. Appium+python自动化环境搭建(小白适用)

    写在前面: 没开始搭建前听好多人说,学习appium80%的人都死于环境搭建,所以一开始很紧张,在搭建环境中也确实遇到了好几个问题,由于之前本人使用app测试经验很少,所以相当于app小白,因此有的问 ...

  8. 前端学习 -- Css -- 内联元素的盒模型

    内联元素不能设置width和height: 设置水平内边距,内联元素可以设置水平方向的内边距:padding-left,padding-right: 垂直方向内边距,内联元素可以设置垂直方向内边距,但 ...

  9. 各种遍历输出(经典版)----java基础总结

    前言:关于共有3中遍历输出方式,很早之前我就想整理,无奈一直没有抽出时间,分别是传统的for循环遍历,迭代器Iterator,foreach,这次我通过测试代码,测试了一下. 先用一张草图,大概有个印 ...

  10. pytho部分命令

    python --version查看版本号 pip install XXX 安装模块 pip uninstall XXX 卸载模块