URAL 1966 Cycling Roads 计算几何
Cycling Roads
题目连接:
http://acm.hust.edu.cn/vjudge/contest/123332#problem/F
Description
When Vova was in Shenzhen, he rented a bike and spent most of the time cycling around the city. Vova was approaching one of the city parks when he noticed the park plan hanging opposite the central entrance. The plan had several marble statues marked on it. One of such statues stood right there, by the park entrance. Vova wanted to ride in the park on the bike and take photos of all statues. The park territory has multiple bidirectional cycling roads. Each cycling road starts and ends at a marble statue and can be represented as a segment on the plane. If two cycling roads share a common point, then Vova can turn on this point from one road to the other. If the statue stands right on the road, it doesn't interfere with the traffic in any way and can be photoed from the road.
Can Vova get to all statues in the park riding his bike along cycling roads only?
Input
The first line contains integers n and m that are the number of statues and cycling roads in the park (1 ≤ m < n ≤ 200) . Then n lines follow, each of them contains the coordinates of one statue on the park plan. The coordinates are integers, their absolute values don't exceed 30 000. Any two statues have distinct coordinates. Each of the following m lines contains two distinct integers from 1 to n that are the numbers of the statues that have a cycling road between them.
Output
Print “YES” if Vova can get from the park entrance to all the park statues, moving along cycling roads only, and “NO” otherwise.
Sample Input
4 2
0 0
1 0
1 1
0 1
1 3
4 2
Sample Output
YES
Hint
题意
平面给你n个点,以及m对直线,问你这m条直线是否能够使得所有点都在一个连通块内
题解:
用并查集去维护就好了,如果两条直线相交,就把直线端点的压进并查集就好了。
然后最后统计一下并查集的大小。
代码
#include<bits/stdc++.h>
using namespace std;
/* 常用的常量定义 */
const double INF = 1E200;
const double EP = 1E-10;
const int MAXV = 300;
const double PI = 3.14159265;
const int maxn = 300;
/* 基本几何结构 */
struct POINT
{
double x;
double y;
POINT(double a=0, double b=0) { x=a; y=b;} //constructor
};
struct LINESEG
{
POINT s;
POINT e;
int a,b;
LINESEG(POINT a, POINT b) { s=a; e=b;}
LINESEG() { }
};
struct LINE // 直线的解析方程 a*x+b*y+c=0 为统一表示,约定 a >= 0
{
double a;
double b;
double c;
LINE(double d1=1, double d2=-1, double d3=0) {a=d1; b=d2; c=d3;}
};
double multiply(POINT sp,POINT ep,POINT op)
{
return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y));
}
// 如果线段u和v相交(包括相交在端点处)时,返回true
//
//判断P1P2跨立Q1Q2的依据是:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0。
//判断Q1Q2跨立P1P2的依据是:( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) >= 0。
bool intersect(LINESEG u,LINESEG v)
{
return( (max(u.s.x,u.e.x)>=min(v.s.x,v.e.x))&& //排斥实验
(max(v.s.x,v.e.x)>=min(u.s.x,u.e.x))&&
(max(u.s.y,u.e.y)>=min(v.s.y,v.e.y))&&
(max(v.s.y,v.e.y)>=min(u.s.y,u.e.y))&&
(multiply(v.s,u.e,u.s)*multiply(u.e,v.e,u.s)>=0)&& //跨立实验
(multiply(u.s,v.e,v.s)*multiply(v.e,u.e,v.s)>=0));
}
/******************************************************************************
判断点p是否在线段l上
条件:(p在线段l所在的直线上) && (点p在以线段l为对角线的矩形内)
*******************************************************************************/
bool online(LINESEG l,POINT p)
{
return( (multiply(l.e,p,l.s)==0) &&( ( (p.x-l.s.x)*(p.x-l.e.x)<=0 )&&( (p.y-l.s.y)*(p.y-l.e.y)<=0 ) ) );
}
int fa[maxn];
int fi(int u){
return u != fa[u] ? fa[u] = fi( fa[u] ) : u;
}
void uni(int u ,int v){
int p1 = fi( u ) , p2 = fi( v );
if( p1 != p2 ) fa[p1] = p2;
}
POINT p[maxn];
LINESEG L[maxn];
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
fa[i]=i;
}
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
L[i].s=p[x],
L[i].e=p[y];
L[i].a=x;
L[i].b=y;
uni(x,y);
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(online(L[j],p[i])){
uni(i,L[j].a);
uni(i,L[j].b);
}
}
}
for(int i=1;i<=m;i++){
for(int j=1;j<=m;j++){
if(intersect(L[i],L[j])){
uni(L[i].a,L[j].a);
uni(L[i].b,L[j].b);
uni(L[i].b,L[j].a);
uni(L[i].a,L[j].b);
}
}
}
int tmp = fi(1);
for(int i=1;i<=n;i++){
if(fi(i)!=tmp){
printf("NO\n");
return 0;
}
}
printf("YES\n");
return 0;
}
URAL 1966 Cycling Roads 计算几何的更多相关文章
- URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集
F - Cycling Roads Description When Vova was in Shenzhen, he rented a bike and spent most of the ...
- Ural 1966 Cycling Roads
================ Cycling Roads ================ Description When Vova was in Shenzhen, he rented a ...
- URAL - 1966 - Cycling Roads(并检查集合 + 判刑线相交)
意甲冠军:n 积分,m 边缘(1 ≤ m < n ≤ 200),问:是否所有的点连接(两个边相交.该 4 点连接). 主题链接:http://acm.timus.ru/problem.aspx? ...
- Ural 2036. Intersect Until You're Sick of It 计算几何
2036. Intersect Until You're Sick of It 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=2036 ...
- URAL 1775 B - Space Bowling 计算几何
B - Space BowlingTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/ ...
- Ural 1046 Geometrical Dreams(解方程+计算几何)
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...
- URAL 2099 Space Invader题解 (计算几何)
啥也不说了,直接看图吧…… 代码如下: #include<stdio.h> #include<iostream> #include<math.h> using na ...
- URAL 1963 Kite 计算几何
Kite 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/C Description Vova bought a kite con ...
- 【计算几何】URAL - 2101 - Knight's Shield
Little Peter Ivanov likes to play knights. Or musketeers. Or samurai. It depends on his mood. For pa ...
随机推荐
- Linux(Debian)软件安装
# 配置/etc/apt/sources.list 通过root权限修改/etc/apt/sources.list $ su #输入密码进入root权限 $ chmod 0666 /etc/apt/s ...
- [转载]使用 NuGet 管理项目库
原文:http://msdn.microsoft.com/zh-cn/magazine/hh547106.aspx 无论多么努力,Microsoft 也没办法提供开发人员所需要的每一个库. 虽然 Mi ...
- 从零开始编写自己的JavaScript框架(一)
1. 模块的定义和加载 1.1 模块的定义 一个框架想要能支撑较大的应用,首先要考虑怎么做模块化.有了内核和模块加载系统,外围的模块就可以一个一个增加.不同的JavaScript框架,实现模块化方式各 ...
- java关于图片处理修改图片大小
最近做了一个关于图片浏览的内容.因为图片都是一些证件的资料的扫描件所以比较大,对系统的影响也是非常之大的,有很大可能直接把系统干死.那么我是这么处理的,给大家分享一下.如果大家有好的方案的话一定要早点 ...
- 200行代码实现RPC框架
之前因为项目需要,基于zookeeper和thrift协议实现了一个简单易用的RPC框架,核心代码不超过200行. zookeeper主要作用是服务发现,thrift协议作为通信传输协议, 基于com ...
- CSUST 1506 ZZ的计算器 模拟题
题目描述:实现一个计算器,可以进行任意步的整数以内的加减乘除运算,运算符号只有+.-.*./,求出结果. 解题报告:一个可以说麻烦的模拟题,我们可以这样,输入以字符串的形式输入,然后将输入先做一遍预处 ...
- Fiddler抓取HTTPS最全(强)攻略
本文来自于柠檬班49期学员superman童鞋的学习笔记.希望对同样是测试萌新的你有帮助,如果觉得好,可以点个赞噢~ 对于想抓取HTTPS的测试初学者来说,常用的工具就是fiddler.可是在初学时, ...
- 设置文字小于12px
问题:有时候会需要设置一些小于12px的字或是icon: 方法:使用css3的transform的scale,来放大和缩小,但是相应的容器也会缩小 transform: scale(0.6);
- java 把被检查的异常转换为不检查的异常
一.当我们不知道该怎么处理这个异常,但是也不想把它"吞"了,或者打印一些无用的信息,可以使用异常链的思路解决.可以直接报"被检查的异常"包装进RuntimeEx ...
- java字节流复制文件
import java.io.FileInputStream; import java.io.FileOutputStream; import org.junit.Test; public class ...