bzoj3114 LCM Pair Sum
题意:以质因数分解的方式给定n,求所有满足:lcm(a, b) = n的无序数对的价值和。其中(a, b)的价值为a + b
解:
定义首项为a,公比为q,项数为n的等比数列的和为getQ(a, q, n)
首先考虑只有一个质因数,例如4。
有如下数对:(1, 4), (2, 4), (4, 4)
可得答案为getQ(1, 2, 2) + 43
然后扩展:6。
对于每个质因数来说:
2: (1, 2), (2, 2)
3: (1, 3), (3, 3)
两两乘起来之后发现:少了一项(2, 3),这是由于我们用的是无序数对。那么改成有序数对试试。
2: 3:
(1, 2) (1, 3)
(2, 1) (3, 1)
(2, 2) (3, 3)
交叉相乘:
(1, 6) (3, 2) (3, 6)
(2, 3) (6, 1) (6, 3)
(2, 6) (6, 2) (6, 6)
发现所有无序数对除了(6, 6)之外都出现了两次,于是补上一个(6, 6)之后/2即可。
现在考虑如何求交叉相乘的表。
设我们的两列数对如下:
(a, b) (e, f)
(c, d) (g, h)
要求的式子:
ae + bf + ag + bh + ce + df + cg + dh
因式分解:
(a + c)(e + g) + (b + d)(f + h)
考虑我们一开始列出来的某一列:
2:
(1, 2)
(2, 1)
(2, 2)
可得:a + c = b + d
故上式 = 2(a + c)(e + g)
推广:
设n = Πaipi,则ans = 2Π{getQ(1, a[i], p[i] + 1) + pi * aipi}
复杂度TmlogV,其中V为指数值域。
#include <cstdio> typedef long long LL;
const int N = ;
const LL MO = 1e9 + ; int a[N], p[N]; inline LL qpow(LL a, LL b) {
LL ans = ;
while(b) {
if(b & ) {
ans = ans * a % MO;
}
a = a * a % MO;
b = b >> ;
}
return ans;
} inline LL getQ(LL a, LL q, LL n) {
a %= MO;
if(!n) {
return 0ll;
}
if(n == || !a || !q) {
return a;
}
if(n == ) {
return (a + a * q % MO) % MO;
}
if(n & ) {
return (a + getQ(a * q % MO, q, n - )) % MO;
}
return (qpow(q, n >> ) + ) * getQ(a, q, n >> ) % MO;
} inline void solve() {
int n;
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d%d", &a[i], &p[i]);
}
LL ans = , sum = ;
for(int i = ; i <= n; i++) {
LL temp = qpow(a[i], p[i]) * p[i] % MO;
(temp += getQ(, a[i], p[i] + )) %= MO;
ans = ans * temp % MO;
(sum *= qpow(a[i], p[i])) %= MO;
//printf("temp : %lld \n", temp);
}
//printf("sum = %lld \n", sum);
ans = (ans + sum + sum) % MO;
ans = ans * ((MO + ) >> ) % MO;
printf("%lld\n", ans);
return;
} int main() { int T;
scanf("%d", &T);
for(int i = ; i <= T; i++) {
printf("Case %d: ", i);
solve();
} return ;
}
AC代码
题外话:这东西是我在某个最小割练习题表里面看到的......
bzoj3114 LCM Pair Sum的更多相关文章
- uva12546. LCM Pair Sum
uva12546. LCM Pair Sum One of your friends desperately needs your help. He is working with a secret ...
- light oj 1236 - Pairs Forming LCM & uva 12546 - LCM Pair Sum
第一题给定一个大数,分解质因数,每个质因子的个数为e1,e2,e3,……em, 则结果为((1+2*e1)*(1+2*e2)……(1+2*em)+1)/2. 代码如下: #include <st ...
- UVA12546_LCM Pair Sum
题目的意思是求 [西伽马(p+q)]其中lcm(p,q)=n. 又见数论呀. 其实这个题目很简单,考虑清楚了可以很简单的方法飘过. 我一开始是这样来考虑的. 对于每一个单独的质因子,如果为p,它的次数 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- Subarray Sum Closest
Question Given an integer array, find a subarray with sum closest to zero. Return the indexes of the ...
- LeetCode 1099. Two Sum Less Than K
原题链接在这里:https://leetcode.com/problems/two-sum-less-than-k/ 题目: Given an array A of integers and inte ...
- [LC] 1099. Two Sum Less Than K
Given an array A of integers and integer K, return the maximum S such that there exists i < j wit ...
- 【LeetCode】1099. Two Sum Less Than K 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力求解 日期 题目地址:https://leetco ...
- Java中的泛型 (上) - 基本概念和原理
本节我们主要来介绍泛型的基本概念和原理 后续章节我们会介绍各种容器类,容器类可以说是日常程序开发中天天用到的,没有容器类,难以想象能开发什么真正有用的程序.而容器类是基于泛型的,不理解泛型,我们就难以 ...
随机推荐
- c# 限制同时启动多个实例程序运行
using System; using System.Collections.Generic; using System.Text; using System.Diagnostics; using S ...
- 20155235 王玥 《基于Arm实验箱的接口测试和应用》 课程设计报告
20155235 王玥 <基于Arm实验箱的接口测试和应用> 课程设计报告 一.设计方案及可行性分析 熟悉 Linux 开发环境 多线程应用程序设计 串行端口程序设计 中断实验 二.详细设 ...
- 浅谈Spring中的事务回滚
使用Spring管理事务过程中,碰到过一些坑,因此也稍微总结一下,方便后续查阅. 1.代码中事务控制的3种方式 编程式事务:就是直接在代码里手动开启事务,手动提交,手动回滚.优点就是可以灵活控 ...
- 新的旅程:NodeJS - 环境篇
用ASP.NET MVC好多年了,还记得当初为MVC所倡导的"DRY"理念所感染,为Razor的简单而震撼.随着MVC的成熟反而让我觉得似乎渐渐地走入了微软营造的一种高技术的牢笼. ...
- Spring+SpringMVC+MyBatis整合优化篇
优化篇 Spring+SpringMVC+MyBatis+easyUI整合优化篇(一)System.out.print与Log Spring+SpringMVC+MyBatis+easyUI整合优化篇 ...
- Frida----安装
介绍 它是本机应用程序的 Greasemonkey,或者更多技术术语,它是一个动态代码检测工具包.它允许您将JavaScript或您自己的库的片段注入Windows,macOS,GNU / Linux ...
- GitHub 新手教程 五,Git GUI 新手教程(2),Clone Existing Repository 克隆代码库
1,注意: 网上大部分教程都是从“Create New Repository”讲起,这其实给我们新手埋了很大的一个坑.按照类似的教程,仅做到一半,各种错误窗口就会弹出来了,像什么:“非同一代码库”.“ ...
- Unity3D工程全资源自动检测系统
是什么 这系统到底是个啥 本系统主要用于自动监测与检测各类型资源是否正常及满足指定规范,并在第一时间把出现的问题输出到控制台与保存到文件,以供对应的负责人及时修正. 为什么 你可能经常遇到的问题 资源 ...
- python发送邮件脚本ssl 465端口
#coding:utf8 from smtplib import SMTP_SSL from email.header import Header from email.mime.text impor ...
- IDA Pro 在CSAPP lab2中的使用
在做lab2的时候,偶然的情况下,发现了IDA pro这样一个反汇编工具,总的来说对于lab2这样的小实验读懂代码的大体功能是有作用的,但对于想要具体明白某一条指令的执行过程,又显得不足,到最后还是需 ...