【刷题】BZOJ 4000 [TJOI2015]棋盘
Description
.png)
Input
输入数据的第一行为两个整数N,M表示棋盘大小。第二行为两个整数P,K,
表示攻击范围模板的大小,以及棋子在模板中的位置。接下来三行,
每行P个数,表示攻击范围的模版。每个数字后面一个空格。
Output
一个整数,表示可行方案Mod 2 ^32
Sample Input
2 2
3 1
0 1 0
1 1 1
0 1 0
Sample Output
7
HINT
1<=N<=10^6,1<=M<=6
Solution
这题有点无聊
先考虑把按照棋盘每一行去状压dp,然后发现跑不了
于是又了解到每次状压的转移方程是一样的,并且 \(m\) 小得可怜,于是就可以用矩阵乘法优化
预处理的话就直接暴力枚举每一个状态和下一个状态,看能否转移就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000000+10,MAXM=(1<<6)+10;
int n,m,P,K,G[4],atk1,atk2;
ui ans;
struct Matrix{
ui a[MAXM][MAXM];
inline Matrix operator * (const Matrix &A) const {
Matrix B;
for(register int i=0;i<(1<<m);++i)
for(register int j=0;j<(1<<m);++j)
{
B.a[i][j]=0;
for(register int k=0;k<(1<<m);++k)B.a[i][j]+=a[i][k]*A.a[k][j];
}
return B;
};
};
Matrix A;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int check(int st,int ed)
{
atk1=0,atk2=0;
for(register int i=0;i<m;++i)
if(st&(1<<i))
{
if(P-K-1>=i)atk1|=(G[1]>>P-K-1-i),atk2|=(G[2]>>P-K-1-i);
else atk1|=(G[1]<<i-P+K+1),atk2|=(G[2]<<i-P+K+1);
}
if((atk1&st)||(atk2&ed))return 0;
atk1=0;atk2=0;
for(register int i=0;i<m;++i)
if(ed&(1<<i))
{
if(P-K-1>=i)atk1|=(G[1]>>P-K-1-i),atk2|=(G[0]>>P-K-1-i);
else atk1|=(G[1]<<i-P+K+1),atk2|=(G[0]<<i-P+K+1);
}
if((atk1&ed)||(atk2&st))return 0;
return 1;
}
inline Matrix qexp(Matrix a,int b)
{
Matrix res=a;b--;
while(b)
{
if(b&1)res=res*a;
a=a*a;
b>>=1;
}
return res;
}
int main()
{
read(n);read(m);read(P);read(K);
for(register int i=0;i<3;++i)
for(register int j=0,x;j<P;++j)read(x),G[i]|=(x<<P-j-1);
G[1]^=(1<<P-K-1);
for(register int i=0;i<(1<<m);++i)
for(register int j=0;j<(1<<m);++j)A.a[i][j]=check(i,j);
A=qexp(A,n);
for(register int i=0;i<(1<<m);++i)ans+=A.a[0][i];
printf("%u\n",ans);
return 0;
}
【刷题】BZOJ 4000 [TJOI2015]棋盘的更多相关文章
- BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )
状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...
- BZOJ第一页刷题计划
BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...
- 【刷题】BZOJ 2407 探险
Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
- 【刷题】BZOJ 4316 小C的独立集
Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...
- 【刷题】BZOJ 4176 Lucas的数论
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- 【刷题】BZOJ 2260 商店购物
Description Grant是一个个体户老板,他经营的小店因为其丰富的优惠方案深受附近居民的青睐,生意红火.小店的优惠方案十分简单有趣.Grant规定:在一次消费过程中,如果您在本店购买了精制油 ...
- 【刷题】BZOJ 4566 [Haoi2016]找相同字符
Description 给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数.两个方案不同当且仅当这两个子串中有一个位置不同. Input 两行,两个字符串s1,s2,长度分别为 ...
- 【刷题】BZOJ 3365 [Usaco2004 Feb]Distance Statistics 路程统计
Description 在得知了自己农场的完整地图后(地图形式如前三题所述),约翰又有了新的问题.他提供 一个整数K(1≤K≤109),希望你输出有多少对农场之间的距离是不超过K的. Input 第1 ...
随机推荐
- css样式显示省略号
用css样式显示省略号,记 .xx{ display: block; width:200px;/*对宽度的定义,根据情况修改*/ overflow: hidden; white-space: n ...
- 关于docker构建镜像
今天正好看到这一块了,记录一下,希望可以帮助到大家. 构建Dockerfile 先来看一个示例: --------------------------------------------------- ...
- 20155311高梓云《网络对抗》逆向及Bof基础
20155311高梓云<网络对抗>逆向及Bof基础 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任 ...
- 【php增删改查实例】第一节 - PHP开发环境配置
最近需要使用PHP,于是把平时的积累整理一下,就有了这个教程. 首先是环境配置: 1.操作系统:windos7 2.后台:PHP 3.前台:Html + js + css 4.数据库:MYSQL 5. ...
- mfc CFileDialog类
知识点: CFileDialog类 SetBitmap LoadImage 动态显示图片 一.CFileDialog类 构造函数 CFileDialog( BOOL bOpenFileDialog, ...
- windows下如何查看进程、端口占用、杀死进程教程
一. 查看所有进程占用的端口 在开始-运行-cmd,输入:netstat –ano 可以查看所有进程 二.查看占用指定端口的程序 当你在用tomcat发布程序时,经常会遇到端口被占用的情况,我们想知道 ...
- 浅谈 iOS 中的 Activity Indicator
Activity Indicator 是iOS开发中必不可少的一个视图.本文就简单地总结一下这个Activity Indicator 的使用方法. 默认 Activity Indicator 以下的函 ...
- 初级字典树查找在 Emoji、关键字检索上的运用 Part-1
系列索引 Unicode 与 Emoji 字典树 TrieTree 与性能测试 生产实践 前言 通常用户自行修改资料是很常见的需求,我们规定昵称长度在2到10之间.假设用户试图使用表情符号
- Salesforce随笔: 将Visualforce Page渲染为PDF文件(Render a Visualforce Page as a PDF File)
参照 : Visualforce Developer Guide 第60页 <Render a Visualforce Page as a PDF File> 你可以用PDF渲染服务生成一 ...
- 派生类&简单工厂模式
派生类&简单工厂模式 git链接: Operation3.1.1 题目描述的代码部分的解释 首先是声明一个Rand类作为父类,然后两个子类RandNumber类和RandOperation类, ...