题面

Min-Max容斥:对于集合S

$min(S)=\sum_{s∈S}(-1)^{|s|+1}max(s)$

$max(S)=\sum_{s∈S}(-1)^{|s|+1}min(s)$

那么这个题就比较板子了,$min(s)$就是$s$任意一位有值的期望,也就是某个数字和$s$有交

不太好求?再容斥一下转化成求$s$没交的,也就是补集,这是个子集和,可以FWT或者我不会的FMT

 #include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=(<<)+;
const double eps=1e-;
int n,all; double ans,pro[N];
int K(int s)
{
int cnt=;
while(s)
cnt++,s-=s&-s;
return cnt%?:-;
}
int main()
{
scanf("%d",&n),all=(<<n)-;
for(int i=;i<=all;i++)
scanf("%lf",&pro[i]);
for(int i=;i<=all+;i<<=)
{
int len=i>>;
for(int j=;j<=all;j+=i)
for(int k=j;k<j+len;k++)
pro[k+len]+=pro[k];
}
for(int i=;i<=all;i++)
if(-pro[i^all]>eps) ans+=K(i)/(-pro[i^all]);
fabs(ans)<=eps?printf("INF"):printf("%.10f",ans);
return ;
}

解题:HAOI 2015 按位或的更多相关文章

  1. [HAOI 2015]按位或

    Description 题库链接 刚开始你有一个数字 \(0\) ,每一秒钟你会随机选择一个 \([0,2^n-1]\) 的数字,与你手上的数字进行或( \(\text{or}\) )操作.选择数字 ...

  2. cogs 1963. [HAOI 2015] 树上操作 树链剖分+线段树

    1963. [HAOI 2015] 树上操作 ★★★☆   输入文件:haoi2015_t2.in   输出文件:haoi2015_t2.out   简单对比时间限制:1 s   内存限制:256 M ...

  3. 树上操作[HAOI 2015]

    树链剖分裸题: 树剖点这里:传送门 代码: #include<bits/stdc++.h> #define sight(c) ('0'<=c&&c<='9') ...

  4. [bzoj 4034][HAOI 2015]树上操作

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...

  5. [HAOI 2015]树上染色

    Description 题库链接 给出一棵 \(n\) 个节点的树,边有权值.让你将树上 \(k\) 个点染黑,剩余 \(n-k\) 个点染白.染色后记一种染色方案的价值为黑点间两两距离和以及白点间两 ...

  6. 【HAOI 2015】 树上操作

    [题目链接] 点击打开链接 [算法] 树链剖分 子树的DFS序是连续的一段! [代码] #include<bits/stdc++.h> using namespace std; #defi ...

  7. 洛谷P3178[HAOI]2015 树上操作

    题目 树剖裸题,这个题更可以深刻的理解树剖中把树上的节点转换为区间的思想. 要注意在区间上连续的节点,一定是在一棵子树中. #include <bits/stdc++.h> #define ...

  8. [总结]其他杂项数学相关(定理&证明&板子)

    目录 写在前面 一类反演问题 莫比乌斯反演 快速莫比乌斯变换(反演)与子集卷积 莫比乌斯变换(反演) 子集卷积 二项式反演 内容 证明 应用举例 另一形式 斯特林反演 第一类斯特林数 第二类斯特林数 ...

  9. NOI 2015 滞后赛解题报告

    报同步赛的时候出了些意外.于是仅仅能做一做"滞后赛"了2333 DAY1 T1离线+离散化搞,对于相等的部分直接并查集,不等部分查看是否在同一并查集中就可以,code: #incl ...

随机推荐

  1. Django Rest Framework源码剖析(七)-----分页

    一.简介 分页对于大多数网站来说是必不可少的,那你使用restful架构时候,你可以从后台获取数据,在前端利用利用框架或自定义分页,这是一种解决方案.当然django rest framework提供 ...

  2. python基础3之文件操作、字符编码解码、函数介绍

    内容概要: 一.文件操作 二.字符编码解码 三.函数介绍 一.文件操作 文件操作流程: 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 基本操作: #/usr/bin/env ...

  3. JavaEE笔记(十一)

    Spring beans使用参数占位符(JDBC配置读取示例) beans.xml配置文件 <?xml version="1.0" encoding="UTF-8& ...

  4. [2016北京集训试题15]cot-[分块]

    Description Solution 如图,假如我们知道了以任何一个点为顶点的135-180度的前缀和和90-180度的前缀和,我们就可以搞出三角形的面积. 差分.add[i][j]和dev[i] ...

  5. AWK处理数组

    转自ChinaUnix论坛,感谢作者整理. 在文本处理的工作中,awk的数组是必不可少的工具,在这里,同样以总结经验和教训的方式和大家分享下我的一些学习心得,如有错误的地方,请大家指正和补充. awk ...

  6. Linux日记Day3---Linux的文件属性与目录配置

    Linux最优秀的地方之一,就在于它的多用户.多任务环境.为了让用户具有较安全的管理机制,文件的权限管理是很重要的.Linux通常将文件的访问方式分为分为三个类别,分别是owner/group/oth ...

  7. pycharm自动生成头文件注释

    1.在file->settings->file and code templates->python script即可自定制pycharm创建文件自动生成的头文件注释信息 2.创建p ...

  8. R语言学习 第五篇:字符串操作

    文本数据存储在字符向量中,字符向量的每个元素都是字符串,而非单独的字符.在R中,可以使用双引号,或单引号表示字符. 一,字符串中的字符数量 函数nchar()用于获得字符串中的字符数量: > s ...

  9. 从零系列--开发npm包(一)

    一.目的 主要是纪录和回顾自己开发的一些步骤以及遇到的一些问题和解决方案 二.准备工作 1.IDE 选择 VS Code 2.安装node 环境 (https://nodejs.org/zh-cn/) ...

  10. B1004. 成绩排名

    这一题总算是把C++的重载活学活用了一回,节省了很多脑细胞. #include<bits/stdc++.h> using namespace std; struct student{ st ...