BZOJ 2865 字符串识别 | 后缀数组 线段树
集训讲字符串的时候我唯一想出正解的题……
链接
题面
给出一个长度为n (n <= 5e5) 的字符串,对于每一位,求包含该位的、最短的、在原串中只出现过一次的子串。
题解
“只出现过一次”,想到后缀数组,后缀数组可以求出以第i位开头的最短的在原串中只出现过一次的子串——它的长度是min(height[rank[i]], height[rank[i] + 1) + 1。
所以我们枚举每个位置i,找到这个串,然后考虑它的贡献:
对于这个串之内的位置,答案可以用这个串的长度更新;
对于这个串右边的位置,串可以向右“延伸”直到包含该位置(延伸后的串显然也只出现过一次),所以答案可以用(该位置 - i + 1)来更新。
这两个分别用线段树维护即可。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define enter putchar('\n')
#define space putchar(' ')
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c > '9' || c < '0')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 500005, INF = 0x3f3f3f3f;
int n, sa[N], rnk[N], buf1[N], buf2[N], buc[N], height[N];
int data[2][4*N], lazy[2][4*N], pos[N];
char s[N];
void pushdown(int h, int k){
if(lazy[h][k] == INF) return;
lazy[h][k << 1] = min(lazy[h][k << 1], lazy[h][k]);
lazy[h][k << 1 | 1] = min(lazy[h][k << 1 | 1], lazy[h][k]);
data[h][k << 1] = min(data[h][k << 1], lazy[h][k]);
data[h][k << 1 | 1] = min(data[h][k << 1 | 1], lazy[h][k]);
lazy[h][k] = INF;
}
void modify(int h, int k, int l, int r, int ql, int qr, int x){
if(ql <= l && qr >= r){
data[h][k] = min(data[h][k], x);
lazy[h][k] = min(lazy[h][k], x);
return;
}
int mid = (l + r) >> 1;
if(ql <= mid) modify(h, k << 1, l, mid, ql, qr, x);
if(qr > mid) modify(h, k << 1 | 1, mid + 1, r, ql, qr, x);
data[h][k] = min(data[h][k << 1], data[h][k << 1 | 1]);
}
void pushdown_all(int k, int l, int r){
if(l == r) return (void)(pos[l] = k);
pushdown(0, k), pushdown(1, k);
int mid = (l + r) >> 1;
pushdown_all(k << 1, l, mid);
pushdown_all(k << 1 | 1, mid + 1, r);
}
void suffix_sort(){
int m = 128, *x = buf1, *y = buf2;
for(int i = 0; i <= m; i++) buc[i] = 0;
for(int i = 1; i <= n; i++) buc[x[i] = s[i]]++;
for(int i = 1; i <= m; i++) buc[i] += buc[i - 1];
for(int i = n; i; i--) sa[buc[x[i]]--] = i;
for(int k = 1, p = 0; k <= n && p < n; k *= 2, m = p, p = 0){
for(int i = n - k + 1; i <= n; i++) y[++p] = i;
for(int i = 1; i <= n; i++) if(sa[i] > k) y[++p] = sa[i] - k;
for(int i = 0; i <= m; i++) buc[i] = 0;
for(int i = 1; i <= n; i++) buc[x[y[i]]]++;
for(int i = 1; i <= m; i++) buc[i] += buc[i - 1];
for(int i = n; i; i--) sa[buc[x[y[i]]]--] = y[i];
swap(x, y), x[sa[1]] = 1, p = 1;
for(int i = 2; i <= n; i++)
x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k]) ? p : ++p;
}
for(int i = 1; i <= n; i++) rnk[sa[i]] = i;
for(int i = 1, k = 0; i <= n; i++){
if(rnk[i] == 1) continue;
int j = sa[rnk[i] - 1];
if(k) k--;
while(i + k <= n && j + k <= n && s[i + k] == s[j + k]) k++;
height[rnk[i]] = k;
}
}
int main(){
scanf("%s", s + 1);
n = strlen(s + 1);
suffix_sort();
memset(data, INF, sizeof(data));
memset(lazy, INF, sizeof(lazy));
for(int i = 1; i <= n; i++){
int len = max(height[rnk[i]], height[rnk[i] + 1]);
if(i + len <= n) modify(0, 1, 1, n, i, i + len, len + 1);
if(i + len < n) modify(1, 1, 1, n, i + len + 1, n, 1 - i);
}
pushdown_all(1, 1, n);
for(int i = 1; i <= n; i++)
write(min(data[0][pos[i]], i + data[1][pos[i]])), enter;
return 0;
}
BZOJ 2865 字符串识别 | 后缀数组 线段树的更多相关文章
- bzoj 2865 字符串识别 —— 后缀数组
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2865 唯一出现的子串就是每个后缀除去和别的后缀最长的 LCP 之外的前缀: 所以用这个更新一 ...
- bzoj 2865 字符串识别——后缀数组
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2865 做出 ht[ ] 之后,sa[ ] 上每个位置和它前面与后面取 LCP ,其中较大的长 ...
- 【BZOJ4556】[TJOI2016&HEOI2016] 字符串(后缀自动机+线段树合并+二分)
点此看题面 大致题意: 给你一个字符串\(s\),每次问你一个子串\(s[a..b]\)的所有子串和\(s[c..d]\)的最长公共前缀. 二分 首先我们可以发现一个简单性质,即要求最长公共前缀,则我 ...
- bzoj 1396: 识别子串 && bzoj 2865: 字符串识别【后缀数组+线段树】
根据height数组的定义,和当前后缀串i最长的相同串的长度就是max(height[i],height[i+1]),这个后缀贡献的最短不同串长度就是len=max(height[i],height[ ...
- BZOJ 2865 字符串识别(后缀数组+线段树)
很容易想到只考虑后缀长度必须为\(max(height[rk[i]],height[rk[i]+1])+1\)(即\([i,i+x-1]\)代表的串只出现过一次)然后我正着做一遍反着做一遍,再取一个\ ...
- BZOJ 1396: 识别子串( 后缀数组 + 线段树 )
这道题各位大神好像都是用后缀自动机做的?.....蒟蒻就秀秀智商写一写后缀数组解法..... 求出Height数组后, 我们枚举每一位当做子串的开头. 如上图(x, y是height值), Heigh ...
- BZOJ.1396.识别子串(后缀自动机/后缀数组 线段树)
题目链接 SAM:能成为识别子串的只有那些|right|=1的节点代表的串. 设这个节点对应原串的右端点为r[i],则如果|right[i]|=1,即\(s[\ [r_i-len_i+1,r_i-le ...
- BZOJ 5496: [2019省队联测]字符串问题 (后缀数组+主席树优化建图+拓扑排序)
题意 略 分析 考场上写了暴力建图40分溜了-(结果只得了30分) 然后只要优化建边就行了 首先给出的支配关系无法优化,就直接A向它支配的B连边. 考虑B向以B作为前缀的所有A连边,做一遍后缀数组,两 ...
- 【XSY1551】往事 广义后缀数组 线段树合并
题目大意 给你一颗trie树,令\(s_i\)为点\(i\)到根的路径上的字符组成的字符串.求\(max_{u\neq v}(LCP(s_u,s_v)+LCS(s_u,s_v))\) \(LCP=\) ...
随机推荐
- OO——电梯作业总结
目录 电梯作业总结 程序结构与复杂度的分析 第一次作业 第二次作业 第三次作业 程序BUG的分析 互测 自动评测 有效性 总结 电梯作业总结 程序结构与复杂度的分析 第一次作业 1.设计思路 第一次作 ...
- Tomcat 动态数据库连接池
package com.boguan.bte.util; import java.sql.Connection;import java.sql.SQLException;import java.uti ...
- 20155216 实验一 逆向与Bof基础
实验一 逆向与Bof基础 一.直接修改程序机器指令,改变程序执行流程 使用 objdump -d pwn1 对pwn1文件进行反汇编. 可知main函数跳转至foo函数,先要使main函数跳转至get ...
- 【来龙去脉系列】AutoMapper一款自动映射框架
前言 通常在一个应用程序中,我们开发人员会在两个不同的类型对象之间传输数据,通常我们会用DTOs(数据传输对象),View Models(视图模型),或者直接是一些从一个service或者Web AP ...
- 【第十一课】Tomcat原理解析【转】
目录 一.Tomcat顶层架构 二.Tomcat顶层架构小结: 三.Connector和Container的微妙关系 四.Connector架构分析 五.Container架构分析 六.Contain ...
- CS100.1x-lab3_text_analysis_and_entity_resolution_student
这次作业叫Text Analysis and Entity Resolution,比前几次作业难度要大很多.相关ipynb文件见我github. 实体解析在数据清洗和数据整合中是一个很重要,且有难度的 ...
- binlog2sql使用总结
binlog2sql是大众点评开源的一款用于解析binlog的工具,在测试环境试用了下,还不错. 其具有以下功能 1. 提取SQL 2. 生成回滚SQL 关于该工具的使用方法可参考github操作文档 ...
- Accer 4752G添加固态硬盘 双系统
(此文一直在草稿箱里躺了一年,略作修改后发布~) 背景:电脑是2011年年末买的,用到现在也已经5年多了,好在没坏过什么硬件,有过2年疯狂打LOL的经历,之后电脑就打不动了,FPS始终上不去,启动游戏 ...
- Python初学者随笔Week1
Python从入门到放弃 本文主要是描述的是作为初学者对python学习的过程与经历分享,包括一些历程的分享与重要的时间节点记录,对于python学习的笔记与心得. 如果你也是初学者,我们可以一起学习 ...
- djbc
jdbc:mysql://localhost:3306:test这句里面分如下解析:jdbc:mysql:// 是指JDBC连接方式:localhost: 是指你的本机地址:3306 SQL数据库的端 ...