Description:

甲乙进行比赛。

他们各有k1,k2个集合[Li,Ri]
每次随机从他们拥有的每个集合中都取出一个数
S1=sigma甲取出的数,S2同理
若S1>S2甲胜 若S1=S2平局 否则乙胜
分别求出甲胜、平局、乙胜的概率。
(显然这个概率是有理数,记为p/q,则输出答案为(p/q)%(1e9+7))(逆元)
注意 多组数据

Solution:

题解推荐

非常没有思路的神仙题。

大概的收获就是:

0.求概率,就是胜的方案数,除以总的情况数。

1.第一步的操作非常巧妙。Ri-xi,Li+yi

直接决定了之后的边形。

大概是,一定要向已知的常数L,R靠拢,并且把涉及的变量的范围平移统一一下。

如果不进行这一步边形,∑xi+∑yi = 0 这个xi,yi的取值区间就很多了。

平移一下,使得左端点的取值都是0。而非负整数解有比较容易处理。

2.第二步:设右边的常数是m

∑xi+∑yi  < m -> ∑xi+∑yi <= m-1

这个是基本的操作,发现,小于号一般不容易考虑,许多结论中,小于等于,大于等于比较容易处理。

3.进一步操作:

∑xi+∑yi+k = m-1 利用上一步的<=号,进一步引入变量k,使得成为等式。并且,由于之前是<=号,所以,k的取值范围左端点也是0

这就容易处理多了。求方程解的个数。就是胜利的情况总数。

至此,方程转化完毕。

4.容斥:

比较自然了。类似硬币购物的思想。处理范围问题的好帮手。

5.组合数,箱子与球

gzz讲过的。多变量系数为1整数方程,直接转化为常数放进变量里。

我只能想到第0步。。。

对于推式子转化的题目,还是没有任何思路,

只能慢慢体会了。

51nod 1667 概率好题的更多相关文章

  1. 51Nod 1667 概率好题 - 容斥原理

    题目传送门 无障碍通道 有障碍通道 题目大意 若$L_{i}\leqslant x_{i} \leqslant R_{i}$,求$\sum x_{i} = 0$以及$\sum x_{i} < 0 ...

  2. 【51nod 1667】概率好题

    题目 甲乙进行比赛. 他们各有k1,k2个集合[Li,Ri] 每次随机从他们拥有的每个集合中都取出一个数 S1=sigma甲取出的数,S2同理 若S1>S2甲胜 若S1=S2平局 否则乙胜 分别 ...

  3. 【CF913F】Strongly Connected Tournament 概率神题

    [CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...

  4. 51nod 1105 二分好题

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1105 1105 第K大的数 基准时间限制:1 秒 空间限制:131072 ...

  5. 51nod 80分算法题

    1537:见前几篇. 1627:题意:给定n,m的网格(10^5),初始状态为(1,1),你每次可以瞬移到右下方(不可以同行同列逗留)任何一个方格里,求移动到n,m的方案数. 一句话题解:首先很容易想 ...

  6. 概率好题 Light OJ 1027

    题目大意:你在迷宫里,有n扇门,每个门有一个val,这个val可正可负,每次通过一扇门需要abs(x)分钟,如果这个门的val是正的,那么就直接出了迷宫,否则回到原地,问出去迷宫的期望是多少? 思路: ...

  7. A - Arcade Game Gym - 100814A (概率思维题)

    题目链接:https://cn.vjudge.net/contest/285964#problem/A 题目大意:每一次给你你一个数,然后对于每一次操作,可以将当前的数的每一位互换,如果互换后的数小于 ...

  8. LightOJ 1218 概率水题(几何分布)

    题意:给你一个n面骰子,问你投出所有面需要的次数的期望值是多少. 题解:放在过去估计秒解,结果现在自己想好久,还查了下,有人用极限证明...实际上仔细想想这种情况投出与前面不一样的概率p的倒数就是次数 ...

  9. 51nod1667 概率好题

    基准时间限制:4 秒 空间限制:131072 KB 分值: 640  甲乙进行比赛. 他们各有k1,k2个集合[Li,Ri] 每次随机从他们拥有的每个集合中都取出一个数 S1=sigma甲取出的数,S ...

随机推荐

  1. # 《网络对抗》Exp1 PC平台逆向破解20155337祁家伟

    <网络对抗>Exp1 PC平台逆向破解20155337祁家伟 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会 ...

  2. USART_GetITStatus和USART_GetFlagStatus的区别

    USART_GetITStatus()和USART_GetFlagStatus()的区别 都是访问串口的SR状态寄存器,唯一不同是,USART_GetITStatus()会判断中断是否开启,如果没开启 ...

  3. dotnet core webapi 发布部署到docker的步骤

    1. 创建web api项目,编译并测试成功 2. 在项目的根目录添加Dockerfile文件,注意:Dockerfile文件名区分大小写 文件内容如下 # 基于microsoft/dotnet:la ...

  4. kafka的简单理解

    经典组合: Flume+Kafka+Storm+HDFS/HBase Flume:分布式采集 Kafka:分布式缓存 Kafka简介: 一种分布式的.基于发布/订阅的消息系统(Scala编写的) Ka ...

  5. 【翻译】给初学者的 Neural Networks / 神经网络 介绍

    本文翻译自 SATYA MALLICK 的  "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...

  6. Python机器学习/LinearRegression(线性回归模型)(附源码)

    LinearRegression(线性回归) 2019-02-20  20:25:47 1.线性回归简介 线性回归定义: 百科中解释 我个人的理解就是:线性回归算法就是一个使用线性函数作为模型框架($ ...

  7. Hyperledger Fabric网络节点架构

    Fabric区块链网络的组成  区块链网络结构图 区块链网络组成 组成区块链网络相关的节点 节点是区块链的通信主体,和区块链网络相关的节点有多种类型:客户端(应用).Peer节点.排序服务(Orde ...

  8. PAT甲题题解-1069. The Black Hole of Numbers (20)-模拟

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789244.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  9. 1084. Broken Keyboard (20)-水题

    #include <iostream> #include <cstdio> #include <string.h> #include <algorithm&g ...

  10. No.1110_第十一次团队会议

    今天项目进展很多,第一轮迭代基本已经完成了,但是产品还没有发布,主要是因为大家还是太困了,所以再等一等明天再发布吧. 现在队员们急需补觉,因为最近实在是太辛苦了,很多人都没有休息好.现在已经基本完成了 ...