51nod 1667 概率好题
Description:
甲乙进行比赛。
Solution:
非常没有思路的神仙题。
大概的收获就是:
0.求概率,就是胜的方案数,除以总的情况数。
1.第一步的操作非常巧妙。Ri-xi,Li+yi
直接决定了之后的边形。
大概是,一定要向已知的常数L,R靠拢,并且把涉及的变量的范围平移统一一下。
如果不进行这一步边形,∑xi+∑yi = 0 这个xi,yi的取值区间就很多了。
平移一下,使得左端点的取值都是0。而非负整数解有比较容易处理。
2.第二步:设右边的常数是m
∑xi+∑yi < m -> ∑xi+∑yi <= m-1
这个是基本的操作,发现,小于号一般不容易考虑,许多结论中,小于等于,大于等于比较容易处理。
3.进一步操作:
∑xi+∑yi+k = m-1 利用上一步的<=号,进一步引入变量k,使得成为等式。并且,由于之前是<=号,所以,k的取值范围左端点也是0
这就容易处理多了。求方程解的个数。就是胜利的情况总数。
至此,方程转化完毕。
4.容斥:
比较自然了。类似硬币购物的思想。处理范围问题的好帮手。
5.组合数,箱子与球
gzz讲过的。多变量系数为1整数方程,直接转化为常数放进变量里。
我只能想到第0步。。。
对于推式子转化的题目,还是没有任何思路,
只能慢慢体会了。
51nod 1667 概率好题的更多相关文章
- 51Nod 1667 概率好题 - 容斥原理
题目传送门 无障碍通道 有障碍通道 题目大意 若$L_{i}\leqslant x_{i} \leqslant R_{i}$,求$\sum x_{i} = 0$以及$\sum x_{i} < 0 ...
- 【51nod 1667】概率好题
题目 甲乙进行比赛. 他们各有k1,k2个集合[Li,Ri] 每次随机从他们拥有的每个集合中都取出一个数 S1=sigma甲取出的数,S2同理 若S1>S2甲胜 若S1=S2平局 否则乙胜 分别 ...
- 【CF913F】Strongly Connected Tournament 概率神题
[CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...
- 51nod 1105 二分好题
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1105 1105 第K大的数 基准时间限制:1 秒 空间限制:131072 ...
- 51nod 80分算法题
1537:见前几篇. 1627:题意:给定n,m的网格(10^5),初始状态为(1,1),你每次可以瞬移到右下方(不可以同行同列逗留)任何一个方格里,求移动到n,m的方案数. 一句话题解:首先很容易想 ...
- 概率好题 Light OJ 1027
题目大意:你在迷宫里,有n扇门,每个门有一个val,这个val可正可负,每次通过一扇门需要abs(x)分钟,如果这个门的val是正的,那么就直接出了迷宫,否则回到原地,问出去迷宫的期望是多少? 思路: ...
- A - Arcade Game Gym - 100814A (概率思维题)
题目链接:https://cn.vjudge.net/contest/285964#problem/A 题目大意:每一次给你你一个数,然后对于每一次操作,可以将当前的数的每一位互换,如果互换后的数小于 ...
- LightOJ 1218 概率水题(几何分布)
题意:给你一个n面骰子,问你投出所有面需要的次数的期望值是多少. 题解:放在过去估计秒解,结果现在自己想好久,还查了下,有人用极限证明...实际上仔细想想这种情况投出与前面不一样的概率p的倒数就是次数 ...
- 51nod1667 概率好题
基准时间限制:4 秒 空间限制:131072 KB 分值: 640 甲乙进行比赛. 他们各有k1,k2个集合[Li,Ri] 每次随机从他们拥有的每个集合中都取出一个数 S1=sigma甲取出的数,S ...
随机推荐
- BYTE数组与16进制字符串互转
//字节数组转换为HEX 字符串const string Byte2HexString(const unsigned char* input, const int datasize) { ]; ; j ...
- eclipse 最最最常用快捷键
使用eclipse这么久,发现其跟PS一样,使用一些快捷键会有效率很多. 至此总结出以下每次打开eclipse基本都会用上的快捷键. 不熟悉这些快捷键,在实际编程中有意识使用的话对以后编码很有帮助. ...
- Spring MVC统一异常处理
实际上Spring MVC处理异常有3种方式: (1)一种是在Controller类内部使用@ExceptionHandler使用注解实现异常处理: 可以在Controller内部实现更个性化点异常处 ...
- SSRS配置1:凭证和邮件
SSRS是微软的高度集成的报表服务,通过报表服务配置管理器(Reporting Service Configuration Manager,简称RSCM),能够轻松实现报表的配置和管理,本文主要分享凭 ...
- SpringMVC源码总结
SpringMVC源码总结 http://blog.csdn.net/z69183787/article/details/52816927
- REST-framework快速构建API--初体验
一.快速上手 1.环境准备 安装restframework,注册app pip install djangorestframework INSTALLED_APPS = [ 'django.contr ...
- Android 实现 WheelView
wheel view 目录(?)[-] Android WheelView效果图 网上的开源代码 实现思路 扩展Gallery 如何使用 我们都知道,在iOS里面有一种控件------滚筒控件(Whe ...
- 在 OSX 下使用 supervisor 管理服务
我为什么想用 supervisor 来管理服务呢?因为我在系统管理上属于处女座+任性的气质. OSX 下办公用的是普通用户,我不想在 root 权限下做过多设置污染我的系统. OSX 下的服务管理我感 ...
- 将Centos 的默认yum源改为阿里云的yum源后出现的问题
阿里各版本yum源如下: Centos5:http://mirrors.aliyun.com/repo/Centos-5.repo Centos6:http://mirrors.aliyun.com/ ...
- HashMap相关总结
1.HashMap:根据键值hashCode值存储数据,大多数情况下可以直接定位到它的值,但是遍历顺序不确定.所有哈希值相同的值存储到同一个链表中 Ha ...