尼姆博弈

1、问题模型:有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

2、解决思路:用(a,b,c)表示某种局势,显证(0,0,0)是第一种奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。

搞定这个问题需要把必败态的规律找出:(a,b,c)是必败态等价于a^b^c=0(^表示异或运算)。

证明:(1)任何p(a,b,c)=0的局面出发的任意局面(a,b,c’);一定有p(a,b,c’)不等于0。否则可以得到c=c’。

(2)任何p(a,b,c)不等于0的局面都可以走向 p(a,b,c)=0的局面

(3)对于 (4,9,13) 这个容易验证是奇异局势

其中有两个8,两个4,两个1,非零项成对出现,这就是尼姆和为  零的本质。别人要是拿掉13里的8或者1,那你就拿掉对应的9  中的那个8或者1;别人要是拿        掉13里的4,你就拿掉4里的4;  别人如果拿掉13里的3,就把10作分解,然后想办法满 足非零项成对即可。

3、推广一:如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a^b,即可,因为有如下的运算结果: a^b^(a^b)=(a^a)^(b^b)=0^0=0。要将c 变为a^b,只从 c中减去 c-(a^b)

4、推广二:当石子堆数为n堆时,则推广为当对每堆的数目进行亦或之后值为零是必败态。

HDU_1850

Being a Good Boy in Spring Festival

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7260    Accepted Submission(s): 4400

Problem Description
一年在外 父母时刻牵挂
春节回家 你能做几天好孩子吗
寒假里尝试做做下面的事情吧

陪妈妈逛一次菜场
悄悄给爸爸买个小礼物
主动地 强烈地 要求洗一次碗
某一天早起 给爸妈用心地做回早餐

如果愿意 你还可以和爸妈说
咱们玩个小游戏吧 ACM课上学的呢~

下面是一个二人小游戏:桌子上有M堆扑克牌;每堆牌的数量分别为Ni(i=1…M);两人轮流进行;每走一步可以任意选择一堆并取走其中的任意张牌;桌子上的扑克全部取光,则游戏结束;最后一次取牌的人为胜者。
现在我们不想研究到底先手为胜还是为负,我只想问大家:
——“先手的人如果想赢,第一步有几种选择呢?”

 
Input
输入数据包含多个测试用例,每个测试用例占2行,首先一行包含一个整数M(1<M<=100),表示扑克牌的堆数,紧接着一行包含M个整数Ni(1<=Ni<=1000000,i=1…M),分别表示M堆扑克的数量。M为0则表示输入数据的结束。
 
Output
如果先手的人能赢,请输出他第一步可行的方案数,否则请输出0,每个实例的输出占一行。
 
Sample Input
3 5 7 9 0
 
Sample Output
1
 
 #include <iostream>
using namespace std; int main(){
int m;
while(cin >> m && m){
int num[];
int flag = ;
for(int i = ;i < m;i++){
cin >> num[i];
flag ^= num[i];
}
if(flag == ){
cout << << endl;
continue;
}
int ans = ;
for(int i = ;i < m; i++)
if(num[i] > (flag^num[i]))// num[i]中拿 num[i] - (flag^num[i])
//num[i]的值必须大于除了num[i]以外的n-1个数的异或值才可以,
//只有大于才能通过num[i]的减少使得所有数的异或值为0
ans++;
cout << ans << endl;
}
}

nim博弈的更多相关文章

  1. HDU 2509 Nim博弈变形

    1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...

  2. HDU 1907 Nim博弈变形

    1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...

  3. zoj3591 Nim(Nim博弈)

    ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博 ...

  4. hdu 1907 John&& hdu 2509 Be the Winner(基础nim博弈)

    Problem Description Little John is playing very funny game with his younger brother. There is one bi ...

  5. 关于NIM博弈结论的证明

    关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...

  6. HDU - 1850 Nim博弈

    思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...

  7. 博弈论中的Nim博弈

    瞎扯 \(orzorz\) \(cdx\) 聚聚给我们讲了博弈论.我要没学上了,祝各位新年快乐.现在让我讲课我都不知道讲什么,我会的东西大家都会,太菜了太菜了. 马上就要回去上文化课了,今明还是收下尾 ...

  8. HDU 2176:取(m堆)石子游戏(Nim博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  9. hdu 1730 Nim博弈

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1730 Nim博弈为:n堆石子,每个人可以在任意一堆中取任意数量的石子 n个数异或值为0就后手赢,否则先 ...

  10. HDU - 1849 Rabbit and Grass 【Nim博弈】

    Problem Description 大学时光是浪漫的,女生是浪漫的,圣诞更是浪漫的,但是Rabbit和Grass这两个大学女生在今年的圣诞节却表现得一点都不浪漫:不去逛商场,不去逛公园,不去和AC ...

随机推荐

  1. servlet中url-pattern之/与/*的区别

  2. 通过网址request到response经历的过程

    前言当我们在浏览器中输入一个网址,比如www.google.cn,浏览器就会加载出百度的主页.那么浏览器背后完成的具体是怎么样的呢? 总结起来大概的流程是这样的: (1)浏览器本身是一个客户端,当你输 ...

  3. Ubuntu下安装、激活并配置Pycharm

    Ubuntu下安装.激活并配置Pycharm 最近在学习Python这门语言,到了需要Python编译器学习的阶段,通过网上了解各个Python编译器的优缺点,最后选择了pycharm作为Python ...

  4. 论Ubuntu下的docker多难搭建

    慷慨一下: 上周四开始打算在Ubuntu系统下面熟悉操作一下docker,所以深知在本地的虚拟机上搭建一个docker非常的easy. 但是,要下载一个镜像,真是太难了.基本可以说是下载不了的.于是乎 ...

  5. cdnbest如何配置ssl证书

    cdnbest添加ssl证书有三种方式: 一.第一种在站点设置中添加: 点打开,加入证书后点提交 可以点检测功能检查证书是否有效,打勾说明证书是有效的 二. 第二种是在域名记录里添加: 如下图点击,添 ...

  6. 8个纯CSS3制作的动画应用及源码

    对于一个复杂的图形或者动画来说,之前我们的处理方式是图片叠加或者利用CSS+JavaScript的方法,然而随着CSS3标准的不断成熟,我们甚至完全可以利用CSS3来绘制一些图片和制作丰富的动画特效. ...

  7. poj1984(带权并查集)

    题目链接:http://poj.org/problem?id=1984 题意:给定n个farm,m条边连接farm,k组询问,询问根据前t3条边求t1到t2的曼哈顿距离,若不可求则输出-1. 思路:类 ...

  8. (转)FFMPEG filter使用实例(实现视频缩放,裁剪,水印等)

    本文转载自http://blog.csdn.net/li_wen01/article/details/62442162 FFMPEG官网给出了FFMPEG 滤镜使用的实例,它是将视频中的像素点替换成字 ...

  9. df.dropna()函数和df.ix(),df.at(),df.loc()

  10. TOJ4439微积分――曲线积分(数学,模拟)

    传送门:点我 格林公式P,Q为关于x,y的函数. 现在为了方便起见,现给出x的积分上限1,积分下限0, y的积分上限x,积分下限0. P只是关于Y的函数,Q只是关于X的函数. 输入 开始输入为测试组数 ...