尼姆博弈

1、问题模型:有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

2、解决思路:用(a,b,c)表示某种局势,显证(0,0,0)是第一种奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。

搞定这个问题需要把必败态的规律找出:(a,b,c)是必败态等价于a^b^c=0(^表示异或运算)。

证明:(1)任何p(a,b,c)=0的局面出发的任意局面(a,b,c’);一定有p(a,b,c’)不等于0。否则可以得到c=c’。

(2)任何p(a,b,c)不等于0的局面都可以走向 p(a,b,c)=0的局面

(3)对于 (4,9,13) 这个容易验证是奇异局势

其中有两个8,两个4,两个1,非零项成对出现,这就是尼姆和为  零的本质。别人要是拿掉13里的8或者1,那你就拿掉对应的9  中的那个8或者1;别人要是拿        掉13里的4,你就拿掉4里的4;  别人如果拿掉13里的3,就把10作分解,然后想办法满 足非零项成对即可。

3、推广一:如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a^b,即可,因为有如下的运算结果: a^b^(a^b)=(a^a)^(b^b)=0^0=0。要将c 变为a^b,只从 c中减去 c-(a^b)

4、推广二:当石子堆数为n堆时,则推广为当对每堆的数目进行亦或之后值为零是必败态。

HDU_1850

Being a Good Boy in Spring Festival

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7260    Accepted Submission(s): 4400

Problem Description
一年在外 父母时刻牵挂
春节回家 你能做几天好孩子吗
寒假里尝试做做下面的事情吧

陪妈妈逛一次菜场
悄悄给爸爸买个小礼物
主动地 强烈地 要求洗一次碗
某一天早起 给爸妈用心地做回早餐

如果愿意 你还可以和爸妈说
咱们玩个小游戏吧 ACM课上学的呢~

下面是一个二人小游戏:桌子上有M堆扑克牌;每堆牌的数量分别为Ni(i=1…M);两人轮流进行;每走一步可以任意选择一堆并取走其中的任意张牌;桌子上的扑克全部取光,则游戏结束;最后一次取牌的人为胜者。
现在我们不想研究到底先手为胜还是为负,我只想问大家:
——“先手的人如果想赢,第一步有几种选择呢?”

 
Input
输入数据包含多个测试用例,每个测试用例占2行,首先一行包含一个整数M(1<M<=100),表示扑克牌的堆数,紧接着一行包含M个整数Ni(1<=Ni<=1000000,i=1…M),分别表示M堆扑克的数量。M为0则表示输入数据的结束。
 
Output
如果先手的人能赢,请输出他第一步可行的方案数,否则请输出0,每个实例的输出占一行。
 
Sample Input
3 5 7 9 0
 
Sample Output
1
 
 #include <iostream>
using namespace std; int main(){
int m;
while(cin >> m && m){
int num[];
int flag = ;
for(int i = ;i < m;i++){
cin >> num[i];
flag ^= num[i];
}
if(flag == ){
cout << << endl;
continue;
}
int ans = ;
for(int i = ;i < m; i++)
if(num[i] > (flag^num[i]))// num[i]中拿 num[i] - (flag^num[i])
//num[i]的值必须大于除了num[i]以外的n-1个数的异或值才可以,
//只有大于才能通过num[i]的减少使得所有数的异或值为0
ans++;
cout << ans << endl;
}
}

nim博弈的更多相关文章

  1. HDU 2509 Nim博弈变形

    1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...

  2. HDU 1907 Nim博弈变形

    1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...

  3. zoj3591 Nim(Nim博弈)

    ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博 ...

  4. hdu 1907 John&& hdu 2509 Be the Winner(基础nim博弈)

    Problem Description Little John is playing very funny game with his younger brother. There is one bi ...

  5. 关于NIM博弈结论的证明

    关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...

  6. HDU - 1850 Nim博弈

    思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...

  7. 博弈论中的Nim博弈

    瞎扯 \(orzorz\) \(cdx\) 聚聚给我们讲了博弈论.我要没学上了,祝各位新年快乐.现在让我讲课我都不知道讲什么,我会的东西大家都会,太菜了太菜了. 马上就要回去上文化课了,今明还是收下尾 ...

  8. HDU 2176:取(m堆)石子游戏(Nim博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  9. hdu 1730 Nim博弈

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1730 Nim博弈为:n堆石子,每个人可以在任意一堆中取任意数量的石子 n个数异或值为0就后手赢,否则先 ...

  10. HDU - 1849 Rabbit and Grass 【Nim博弈】

    Problem Description 大学时光是浪漫的,女生是浪漫的,圣诞更是浪漫的,但是Rabbit和Grass这两个大学女生在今年的圣诞节却表现得一点都不浪漫:不去逛商场,不去逛公园,不去和AC ...

随机推荐

  1. Redis Cluster在线迁移

    由于之前的redis cluster物理硬件性能不足.决定升级到更好的服务器上.考虑到redis是核心生产数据库,决定在线迁移,迁移过程,不中断服务. 下面是测试环境的完成迁移步骤:1. 原环境(测试 ...

  2. ubuntu14安装TensorFlow

    1.安装ubuntu 网址:https://www.cnblogs.com/blog4matto/p/5581914.html 选择ubuntu14的原因:最初是想安装16的,后来发现总出问题,网上查 ...

  3. hdu1573-X问题-(扩展欧几里得定理+中国剩余定理)

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. Oracle11g服务详细介绍

    Oracle11g服务详细介绍及哪些服务是必须开启的? Oracle ORCL VSS Writer Service Oracle卷映射拷贝写入服务,VSS(Volume Shadow Copy Se ...

  5. linux 安装nexus3

    准备工作: 环境:linux 系统:centos6.4-x86-x64 安装工具:nexus-3.14 软件下载:nexus-3.14 官网下载地址:点击打开链接 将下载的压缩包通过xft5上传至/o ...

  6. hadoop2.7.7 测试安装 centos7

    useradd –m hadoop –s /bin/bash passwd hadoop   增加sudo权限 chmod u+w /etc/sudoers vi /etc/sudoers root ...

  7. HTTP是用来做什么的

    (一)HTTP协议介绍 超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这个标准.设计HTTP最初的目 ...

  8. table 合并内容相同的第一列

    function mergeCells() { var tbodyTlth = $("#datatable_ajax1 tbody").find("tr").l ...

  9. jQuery文档就绪事件

    [jQuery文档就绪事件] 为了防止文档在完全加载(就绪)之前运行 jQuery 代码.如果在文档没有完全加载之前就运行函数,操作可能失败. $(document).ready(function() ...

  10. Bar-Code-Recognition-System Private

    本设计研究EAN13条形码识别的译码技术,在基于机器视觉技术上,构建了一套条形码在线检测识别系统,系统将由以下几个部分构成:条形码图像定位与采集.计算机图像预处理.条形码图像中值滤波去噪.条码解析与识 ...